Muffakham Jah College of Engineering and Technology

(Sultan-ul-Uloom Education Society)

Approved by AICTE, Affiliated to Osmania University (Osmania University Approved Research Centres in Civil, CSE, ECE & Mech)

(An Autonomous Institution)

DEPARTMENT OF PHYSICS

B.E (SEM-I&II) Syllabus for CSE, CSE (AIML), CSE(AI), CSE(DS), ECE, CIVIL & MECH (w.e.f 2025-2026)

Engineering Physics (Course Code: 25BS102PH)

				cligineering	r mysics (course es as.		W. Wallander
	Т	D	Credits	CIE		SEE	
L	1	1	Creares		11.	Market 60	Evam Duration: 3 Hrs
4	0	0	04	Marks: 40	Exam Duration: 1 Hr	Marks: 60-	-Exam Duration: 3 Hrs

Course objective	Course outcome		
To understand the fundamental principles of lasers and optical fibers in	Students will be able to explain the working and demonstrate applications of laser and fiber-based communication systems.		
communication. To introduce quantum mechanics and quantum computing concepts.	Students will be able to apply quantum principles to analyze qubits, quantum gates, and entanglement.		
To study the structure and properties of magnetic, superconducting, and	Students will be able to analyze the behavior of advance materials in devices like superconductors, QLEDs, and solar cells		
semiconductor materials. To comprehend electromagnetic theory and ultrasonic wave principles.	Students will be able to apply Maxwell's equations and evaluate ultrasonic testing methods for engineering problems		
To explore synthesis and applications of nanomaterials and thin films.	the role of nanomaterials and		

UNIT-1 Laser & Optical Fiber

Characteristics of Laser, Stimulated Emission, Population Inversion, Einstein's Coefficients, Construction and working of CO₂ Laser & Semiconductor Laser, Advantages of Laser-Based Optical Communication in Space, Engineering Applications of Laser.

Construction of Optical Fiber, Types of Optical Fibers (Refractive Index Profiles), Fiber Drawing Process (Double Crucible Method), Basic principle of Optical fiber Sensors & its types, Block diagram of Optical fiber communication system, Applications of optical fibers

UNIT-2 Quantum Physics & Quantum Computing

Physical Significance of Wave Function, Schrodinger Time-Independent Wave Equation, Energy of Particle in 1-D Potential Box, Kronig-Penney Model (Qualitative).

Introduction to Quantum Computing, Types of Qubits & Quantum Gates, Quantum Entanglement & its properties, Applications of Quantum Computing.

#8-2-249 to 267, "Mount Pleasant", Road No. 3, Banjara Hills, Post Box No. 14, Hyderabad - 500 034. T.G. Phone: 040 - 23280301, 23280305, Fax: 040 - 2335 3428

É-mail: principal@mjcollege.ac.in, Website: www.mjcollege.ac.in

UNIT-3 Advanced Materials

Types of Magnetic Materials, Weiss Molecular Field Theory, Hysteresis Curve, Soft and Hard Magnetic Materials, Applications of Magnetic Materials.

Superconductors, Meissner Effect, Type I and Type II Superconductors, BCS Theory (Qualitative), High-T_c Superconductors, Applications of Superconductors.

Direct and Indirect Bandgap Semiconductors, Hall Effect, Construction and Working of Quantum Light Emitting Diodes (QLEDs) & Solar Cell, Classification of Fabrication Techniques for Semiconductor Chips, Applications of Semiconductor Devices

UNIT-4 Electromagnetic Waves and Ultrasonic Waves

Displacement current, Maxwell's equations, Expression for Maxwell's Integral to Differential Equations, Poynting Theorem, Electromagnetic spectrum (brief) and Practical applications (microwave, terahertz, optical)

Properties of ultrasonic waves, Generation of ultrasonic waves (piezoelectric), Ultrasonic Pulse-Echo Testing Method, Types of computer methods for Ultrasonic Testing, Engineering applications of ultrasonic waves

UNIT-5 Nanomaterials and Thin Film Technology

Introduction to nano materials, Surface-to-Volume Ratio at Nano Scale, Bottom-Up Method (Sol-Gel), Top-Down Method (Ball Milling), Properties of nanomaterials in nanoelectronics & 2D Materials, Applications of Nano materials

Introduction to Thin Films, Thermal Evaporation Method, Electron Beam Evaporation Method, Properties of Foldable Electronic devices, Applications of thin films

Characterization Techniques (working) - Scanning Electron Microscope, Raman spectrometer

PRESCRIBED BOOKS

- 1. Modern Engineering Physics I & II: S. Chandralingam, K. Vijayakumar, S. Chand & Co.
- 2. Engineering Physics: P.K. Palanisamy, Scitech Publishers.
- 3. Engineering Physics: S.O. Pillai, New Age International.
- 4. Nielsen M.A., I.L. Chuang, Quantum Computation & Quantum Information, Cambridge Univ. Press.
- 5. Thin Film Fundamentals, A. Goswami, New Age International, New Delhi.
- 6. Nano Materials, A.K. Bandyopadhyay, New Age Publishers.

REFERENCE BOOKS

- Solid State Physics Charles Kittel, Wiley & Sons (Asia) Pvt. Ltd.
- 2. Fundamentals of Physics Halliday, Resnick, Walker.
- 3. Engineering Physics V. Rajendran, McGraw Hill Education.
- 4. Solar Photovoltaics Fundamentals, Technologies and Applications, 3rd Edition, PHI.
- 5. Principles of Quantum Computation and Information G. Benenti, G. Casati, G. Strini, World Scientific.

Chairman, BOS (Physics)
Dr. Shaik Kareem Ahmmad

Professor & Head, Department of Physics

Muffakham Jah College of Engineering & Technology, Hyderabad

Muffakham Jah College of Engineering and Technology

(Sultan-ul-Uloom Education Society)

Approved by AICTE, Affiliated to Osmania University (Osmania University Approved Research Centres in Civil, CSE, ECE & Mech)

(An Autonomous Institution)

DEPARTMENT OF PHYSICS

B.E (SEM-1&II) Syllabus for CSE, CSE(AIML), CSE(AI), CSE(DS), ECE, CIVIL & MECH (w.e.f 2025-2026)

Engineering Physics Lab (Course Code: 25BS151PH)

	Liigilleering i mysics can (course course						
	Т	Р	Credits	CIE		SEE	
0 0	-	_	1	Marks: 25	Exam Duration: 2 Hrs	Marks: 50	Exam Duration: 3 Hrs

Course objective	Course outcome
To understand fundamental concepts of semiconductors, optics, magnetism, and modern materials.	Apply physics principles to study electrical, optical, and magnetic properties of materials.
To perform experiments for measuring electrical, optical, and mechanical properties.	Analyze semiconductor, solar cell, and optical fiber characteristics for device applications.
To analyze and interpret experimental data scientifically.	Demonstrate computational skills for solving problems in quantum mechanics and electromagnetics.
To develop computational and simulation skills using Python/MATLAB.	Evaluate mechanical and elastic properties of materials using experiments and simulations.
To integrate experimental and computational methods for applications in advanced technologies.	

- Study of I–V Characteristics of a P–N Junction Diode Determination of Resistance & Cut-in Voltage.
- Measurement of Energy Band Gap of a Semiconductor
- Study of Hall Effect in Semiconductors Determination of Hall Coefficient, Carrier Concentration, and Mobility.
- 4. Study of Thermistor Characteristics Determination of Temperature Coefficient of Resistance and Constants A & B.
- 5. Plotting of B-H Curve for a Ferromagnetic Material and Determination of energy

FFAKHALOSS JAS

#8-2-249 to 267, "Mount Pleasant", Road No. 3, Banjara Hills, Post Box No. 14, Hyderabad - 500 034. T.G.

Phone: 040 - 23280301, 23280305, Fax: 040 - 2335 3428 E-mail: principal@mjcollege.ac.in, Website: www.mjcollege.ac.in

- Study of V–I Characteristics of a Solar Cell Determination of Fill Factor and Series Resistance.
- 7. Determination of Planck's Constant using Photoelectric Effect (Work Function of Photometal).
- 8. Determination of Numerical Aperture (NA) and Acceptance Angle of an Optical Fiber.
- 9. Measurement of Wavelength of a Laser Source using a Diffraction Grating.
- 10. Determination of Rigidity Modulus of a Wire using Torsional Pendulum.
- 11. Determination of Wavelength of Light using Newton's Rings.
- Visualization of Electromagnetic Wave Propagation Python Simulation of Maxwell's Equations.
- 13. Ultrasonic NDT Using Python Simulation Signal Analysis for Flaw Detection.
- 14. Visualization of Energy Bands in Kronig-Penney Model & Particle in a 1-D Potential Box using Python Simulation.
- 15. Prediction of Density and Elastic Properties of Oxide Glasses/Polymers using Machine Learning.

Note: Minimum eight experiments should be conducted in the Semester

lege of Engineering

Chairman, BOS (Physics)

Dr. Shaik Kareem Ahmmad

Professor & Head, Department of Physics

Muffakham Jah College of Engineering & Technology, Hyderabad