AICTE Model Curriculum with effect from Academic Year 2021-22

Course code		Core/Elective					
BS204CH		EN(((GINEERI Common fo	NG CHEM or All Bran	ISTRY ches)		Core
Pre-requisites		Contact Hou	urs Per We	ek	CIE	SEE	Cradita
·	L	Т	D	Р	CIE	SEE	Credits
-	3	1	-	-	40	60	4

B.E Syllabus- Engineering Chemistry 1st Year Theory & Lab 2021-22

Course Objectives:

- 1. Correlate the properties of materials with their internal structure and use for Engineering applications.
- 2. Apply the principals of electrochemistry in storage of electrical energy in batteries.
- 3. Gains knowledge in causes of corrosion and its prevention.
- 4. Attains knowledge about the disadvantages of hard water for domestic and industrial purposes.
- 5. Also learns the techniques of softening of hard water and treatment of water for drinking purpose.
- 6. Exposed to qualitative and quantitative parameters of chemical fuels.
- 7. Aware eco-friendly materials and processes.

Course Outcomes:

On successful completion of this course, students will be able to:

- 1. Apply concept of electrode potential in identifying feasibility of electrochemical reaction; illustrate electro analytical techniques and working of batteries.
- 2. Identify the mechanism of corrosion of materials on basis of electrochemical approach and devise corrosion control methods.
- 3. Estimate the physical & chemical parameters of quality of water and explain the process of water treatment.
- 4. Explain the influence of chemical structure on properties of materials and their choice in engineering applications.
- 5. Classify chemical fuels and grade them through qualitative analysis.
- 6. Relate the concept of green chemistry to modify engineering processes and materials.

UNIT-I Electrochemistry and Battery Chemistry: Electrochemistry: Electrochemical cells, Electrolytic and Galvanic cells-notation, cell reaction and cell potentials. Types of electrodes, Calomel Quinhydrone and Glass electrodes. Determination of pH of a solution by using Quinhydrone electrode. Thermodynamics of emf of cells, Nernst equation and its derivation. Applications of Nernst equation to electrode potential and emf of cells. Numerical problems.

Batteries: Primary batteries: Zn - Carbon battery. **Secondary batteries:** Pb-Acid battery and Li-Ion battery, Applications.

Flow batteries (Fuel cells): Methanol-Oxygen fuel cells, Construction, Applications.

UNIT-II Water Chemistry and Corrosion: Water Chemistry: Hardness of Water-Types and units of hardness, estimation of temporary and permanent hardness of water by EDTA method. Alkalinity of water and its determination. Water softening by Ion exchange and Reverse Osmosis methods. Numerical problems. Specifications of potable water. Sterilization by Chlorination. Break Point Chlorination.

Corrosion: Causes and its effects. Types of Corrosion-Dry or Chemical corrosion and Wet or Electrochemical corrosion and their mechanism. Electrochemical corrosion –Waterline and Pitting Corrosion. Factors influencing rate of corrosion. **Corrosion control methods:** Cathodic protection methods - Sacrificial anodic and impressed current methods. **Surface coating methods:** Hot Dipping-Galvanizing.

AICTE Model Curriculum with effect from Academic Year 2021-22

UNIT-III Engineering Materials: Polymers: Basics of terms polymers: Monomer and its functionality, Polymers and degree of polymerization. Classification of polymers - Thermoplastics & Thermosetting resins. Types of Polymerization (i) Addition (ii) Condensation (iii) Co-Polymerization. Mechanism of free radical polymerization.

Preparation, Properties & Uses of the following polymers: Plastics - PVC and Bakelite, Fibers - Nylon 6:6, and Kevlar, Elastomers - Buna-S, Butyl and Silicone Rubbers.

Conducting polymers: Introduction, Classification and Mechanism of conduction in Poly-acetylene, Applications of conducting polymers.

Biodegradable polymers: Introduction preparation, properties and applications of polylactic acid.

UNIT-IV Chemical Fuels: Classification of fuels: Introduction, definition and classification of chemical fuels- Primary and secondary fuels. Solid, liquid and gaseous fuels. Requirements of a good fuel. Calorific Value – HCV and LCV. Theoretical calculations of calorific value by Dulong's formula – Numerical problems. **Solid Fuels:** Coal and its Ranking. Analysis of coal - Proximate and Ultimate analysis. **Liquid Fuels:** Fractionation of Petroleum. Composition and uses of Gasoline, Diesel and Kerosene. Cracking & its Significance- Catalytic cracking by moving bed method. **Knocking:** Fuel rating – Octane and Cetane numbers. **Gaseous Fuels:** LPG, CNG -Composition and Uses. **Combustion:** Ignition temperature of a fuel, calculation of air quantities by weight and volume required for combustion of a fuel-Numerical problems.

UNIT-V Green Chemistry and Composites: Green Chemistry: Concept, Principles of green chemistry – Atom Economy, Catalysis. and examples of clean technology. **Biodiesel:** Sources, Concept of Trans esterification and carbon neutrality. Properties and significance. **Composites:** Introduction to composites, composition and characteristic properties of composites. Classification of composites based on matrix, reinforcement and ply. Applications of composites.

Text books:

P.C. Jain & M. Jain, Engineering Chemistry, Dhanpatrai and sons Publishing Company, 17th Edn, New Delhi (2010).

Rama Devi, Venkata Ramana Reddy and P.Rath, Engineering Chemistry, Cengage Learning, New Delhi (2016).

S.S.Dara, S. Chand, A Text Book of Engineering Chemistry, S.Chand Publications, Reprint edition, 2017. Puri and Sharma, Principles of Physical Chemistry, Vishal Publications Co.2019

Agarwal Shikha, Engineering Chemistry, Cambridge University Publications 2015.

Reference Books:

C. V. Agarwal, C. P. Murthy, A. Naidu, "Chemistry of Engineering Materials", Wiley India, 5th Edition, 2013.

R. P. Mani, K. N. Mishra, "Chemistry of Engineering Materials", Cengage Learning, 3rd Edition, 2015. Shashi Chawla, Engineering Chemistry, Dhanpatrai and Company Ltd, Delhi (2015)

S.S Dara, Dr.K Mukkanti, A text book of Engineering Chemistry ,S Chand 2010.

Course code		Core/Elective					
		ENGI	NEERING	G CHEMIS	FRY LAB		
BS204CH		Core					
Pre-requisites	-	Contact Hou	urs Per We	ek 🔋	CIE	SEE	Credits
-	L	Т	D	P 2	25		1.7
Course Objecti	-	-	-	3	25	50	1.5
1. Conduc	t experim	ents, take m	easuremen	ts and analy	ze the data	through hand	s-on experience in
order to	demonsti	rate understa	anding of t	he theoretica	al concepts	of quantitativ	e analysis while
working	g in small	group.	U		1	1	5
2. Interpre	t the elect	ro analytica	l principles	s with experi	imental res	ults graphicall	y.
3. Demons	strate writ	ing skills th	rough clear	r laboratory	reports.		2
Course Outcon	nes:	C	C	•			
1. Estimat	ion of har	dness of wat	ter.				
2. Estimat	ion of mo	bility of ion	s in strong	acids and w	eak acids u	ising conductiv	vity meter.
3. Measure	e the elect	trode potenti	al of a giv	en solution.			
4. Apply t	he princip	les of Color	imetry and	l Electrocher	nistry in qu	uantitative esti	mations.
5. Estimat	ion of the	rate constar	nt of a reac	tion.			
6. Synthes	is of drug	.					
List of Experin	nents:						
1. Introduction to	o Chemica	al Analysis.					
2. Techniques of	f Weighin	19.					
Volumetric An	alvsis:	-8.					
3. Preparation o	f Standard	1 Mohr's sal	t solution.	Standardiza	tion of KM	InO4 and estin	nation
ferrous ion.			, , , ,				
4. Estimation Ire	on (II) by	Dichromato	metry.				
Water Analysis	S:		2				
5. Preparation o	f Standarc	d Magnesiun	n sulphate	solution, sta	ndardizatio	on of EDTA an	nd
Estimation of	Total Ha	rdness.					
6. Preparation o	f Standard	d Sodium Ca	arbonate Se	olution, Star	dardizatio	n of HCl and I	Estimation of
Carbonate and	d Bicarbo	nate by Alka	alinity.				
Conductometry	y:						
7. Estimation of	HCl.						
8. Estimation of	CH3COO	OH and mixt	ure of acid	ls.			
Potentiometry:							
9. Estimation of	HCl.						
10. Estimation of	of Iron.						
pH Metry:							
11. Estimation of	of HCl.						
Colorimetry:	CD I	1 1	1				
12. Verification	of Beer-L	Lambert's la	w and estin	mation of M	anganese.		
Chemical Kine	lics:	a substant of			aia of		
13. Determination	on of rate	constant of a	acid cataly	zed hydroly	sis of meth	lyl acetate.	
Drug Syntnesis	i A oninin						
Noto: Minimum	-spirm.	orimonto al	ould be co	nductod :	the comes	tor	
note: Minimun Textbooke:	u ten exp	eriments sh	ioura de co	mauciea in	the semes	ler.	
1 B D Khoolo	A Gulati	and V Care	SoniarI	Dractical Dh-	reical Char	nistry (D Cha	and & Co. Dalhi)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	and D C	Sharma Ar	, _Senior I	ion to Practi	cal Chemic	mony, (R. Clia stry Wikes pub	niu & CO., Dellill) Nishing New Dell
∠. n. n. sharina	and D.S.	Sharma, Al	muouuct	ion to Fractle		suly, vikas put	maning, new Delf