
1

MUFFAKHAM JAH COLLEGE OF

ENGINEERING AND

TECHNOLOGY

(Affiliated to Osmania University and Recognized by
AICTE)

Mount Pleasant, 8-2-249, Road No. 3, Banjara Hills,

Hyderabad, Telangana 500034.

DEPARTMENT OF COMPUTER
SCIENCE AND ARTIFICIAL

INTELLIGENCE (CS&AI)

COMPUTER
ORGANIZATION

AND MICROPROCESSOR

LAB MANUAL (PC451AD)
B.E IV SEM (2021-2022)

2

I N D E X

 INDEX

S.No. Computer Organization And

Microprocessor Lab List Of Programs

Page No.

1 OVERVIEW OF 8086 MICROPROCESSOR 4-14

2 Program to add two 8 bit numbers 15

3 Program to Subtract Two 8 bit numbers 16

4 Program to Subtract Two 8 bit numbers 17

5 Program to Divide two 8 bit numbers 18

6 Program to add two 16 bit numbers 19

7 Program to Subtract Two 16 bit numbers 20

8 Program to Multiply two 16 bit numbers 21

9 Program to Divide two 16 bit numbers 22

10 Program to add n 16-Bit numbers. 23

11 Program to find the largest of two 8-bit numbers 24

12 Program to find the smallest of two 8-bit

numbers

25

13 Program to find the largest of two 16-BIT
numbers.

26

14 Program to find the smallest of two 16-BIT
numbers.

27

15 Program to find the largest of n 8-BIT numbers. 28

16 Program to find the smallest of n 8-BIT
numbers.

29

17 Program to find the largest of n 16-BIT
numbers.

30

18 Program to find the smallest of n 16-BIT
numbers.

31

20 Program to perform Block Transfer 32

21 Program to sort n numbers 33-34

22 Program to search a 8 bit number 35

3

Content Beyond Syllabus Programs

23 Program to find number of 1’s in an 8 bit

number

36

24 Program to find 2’s complement of a number 37

25 Program to find negative of a number using

NEG

38

4

OVERVIEW OF 8086 MICROPROCESSOR

ARCHITECTURE OF 8086:

As shown in the below figure, the 8086 CPU is divided into two independent functional parts.

Dividing the work between these two units’ speeds up processing.

o Bus Interface Unit(BIU)

o Execution Unit(EU)

The Execution Unit (EU):
● The execution unit of the 8086 tells the BIU where to fetch instructions or data from,

decodes instructions,and executes instructions.

● The EU contains control circuitry, which directs internal operations. A decoder in the EU

translates instructions fetched from memory into a series of actions, which the EU carries

out.

● The EU has a 16-bit arithmetic logic unit (ALU) which can add, subtract, AND, OR, OR,

increment, decrement, complement or shift binary numbers.

● The main functions of EU are:

o Decoding of Instructions

o Execution of instructions

 Steps:

● EU extracts instructions from top of queue in BIU

● Decode the instructions

5

● Generates operands if necessary

● Passes operands to BIU & requests it to perform read or write bus cycles to memory

or I/O

● Perform the operation specified by the instruction on operands

Bus Interface Unit (BIU):

● The BIU sends out addresses, fetches instructions from memory, reads data from ports

and memory, and writes data to ports and memory.

● In simple words, the BIU handles all transfers of data and addresses on the buses for the

execution unit.

8086 has Pipelining Architecture:

● While the EU is decoding an instruction or executing an instruction, which does not require

use of the buses, the BIU fetches up to six instruction bytes for the following instructions.

● The BIU stores these pre-fetched bytes in a first-in-first-out register set called a queue.

When the EU is ready for its next instruction from the queue in the BIU. This is much faster

than sending out an address to the system memory and waiting for memory to send back

the next instruction byte or bytes.

● Except in the case of JMP and CALL instructions, where the queue must be dumped and

then reloaded starting from a new address, this pre-fetch and queue scheme greatly

speeds up processing.

● Fetching the next instruction while the current instruction executes is called pipelining.

REGISTER ORGANIZATION:

● 8086 has a powerful set of registers known as general purpose registers and special

purpose registers. All of them are 16-bit registers.

● The 8086 registers are classified into the following types:

o General Data Registers

o Segment Registers

o Pointers and Index Registers

o Flag Register

6

General Data Registers:

● The registers AX, BX, CX and DX are the general purpose 16-bit registers.

● AX is used as 16-bit accumulator. The lower 8-bit is designated as AL and higher 8-bit is

designated as AH. AL can be used as an 8-bit accumulator for 8-bit operation.

● All data register can be used as either 16 bit or 8 bit. BX is a 16 bit register, but BL indicates

the lower 8-bit of BX and BH indicates the higher 8-bit of BX.

● The register BX is used as offset storage for forming physical address in case of certain

addressing modes.

● The register CX is used default counter in case of string and loop instructions

● DX register is a general purpose register which may be used as an implicit operand or

destination in case of a few instructions.

Segment Registers:
● The 8086 architecture uses the concept of segmented memory. 8086 able to address a

memory capacity of 1 megabyte and it is byte organized. This 1 megabyte memory is

divided into 16 logical segments. Each segment contains 64 kbytes of memory. There are

4 segment registers.

o Code Segment Register(CS):is used for addressing memory location in the

code segment of the memory, where the executable program is stored.

o Data Segment Register(DS): points to the data segment of the memory where

the data is stored.

o Extra Segment Register(ES):also refers to a segment in the memory which is

another data segment in the memory.

o Stack Segment Register(SS):is used for addressing stack segment of the

memory. The stack segment is that segment of memory which is used to store stack data.

● While addressing any location in the memory bank, the physical address is calculated

from two parts:

Physical address= segment address + offset address

● The first is segment address, the segment registers contain 16-bit segment base

addresses, related to different segments. The second part is the offset value in that

segment.

Pointers and Index Registers:
● The pointers registers contain offset within the particular segments. The index and pointer

registers are given below:

● IP(Instruction pointer)-store memory location of next instruction to be executed. The

pointer register IP contains offset within the code segment.

● BP(Base pointer)-The pointer register BP contains offset within the data segment.

● SP(Stack pointer)- The pointer register SP contains offset within the stack segment.

● The index registers are used as general purpose registers as well as for offset storage in

case of indexed, base indexed and relative base indexed addressing modes

7

● SI(Source index)- The register SI is used to store the offset of source data in data

segment.

● DI(Destination index)- The register DI is used to store the offset of destination in

data or extra segment.

8086 flag register and its functions:
● The 8086 flag register contents indicate the results of computation in the ALU. It also

contains some flag bits to control the CPU operations.

● A 16 bit flag register is used in 8086. It is divided into two parts .

o Condition code or status flags

o Machine control flags

● The condition code flag register is the lower byte of the 16-bit flag register. The condition

code flag register is identical to 8085 flag register, with an additional overflow flag.

● The control flag register is the higher byte of the flag register. It contains three flags namely

direction flag (D), interrupt flag (I) and trap flag (T).

● SF- Sign Flag: This flag is set, when the result of any computation is negative. For

signed computations the sign flag equals the MSB of the result.

● ZF- Zero Flag: This flag is set, if the result of the computation or comparison performed

by the previous instruction is zero.

● PF- Parity Flag: This flag is set to 1, if the lower byte of the result contains even number

of 1’s.

● CF- Carry Flag: This flag is set, when there is a carry out of MSB in case of addition

or a borrow in case of subtraction.

● AF(Auxiliary Carry Flag): This is set, if there is a carry from the lowest nibble, i.e,

bit three during addition, or borrow for the lowest nibble, i.e, bit three, during subtraction.

● OF- Over flow Flag: This flag is set, if an overflow occurs, i.e, if the result of a signed

operation is large enough to accommodate in a destination register. The result is of more

than 7-bits in size in case of 8-bit signed operation and more than 15-bits in size in case

of 16-bit sign operations, and then the overflow will be set.

8

● TF- Tarp Flag: If this flag is set, the processor enters the single step execution mode.

The processor executes the current instruction and the control is transferred to the Trap

interrupt service routine.

● IF- Interrupt Flag: If this flag is set, the mask able interrupts are recognized by the

CPU, otherwise they are ignored.

● D- Direction Flag: This is used by string manipulation instructions. If this flag bit is ‘0’,

the string is processed beginning from the lowest address to the highest address, i.e., auto

incrementing mode. Otherwise, the string is processed from the highest address towards

the lowest address, i.e., auto decrementing mode.

Addressing modes of 8086:
● Addressing mode indicates a way of locating data or operands.

● The addressing modes describe the types of operands and the way they are accessed for

executing an instruction.

● According to the flow of instruction execution, the instructions may be categorized as

Sequential control flow instructions and Control transfer instructions

● Sequential control flow instructions are the instructions, which after execution, transfer

control to the next instruction appearing immediately after it (in the sequence) in the

program. For example, the arithmetic, logic, data transfer and processor control

instructions are sequential control flow instructions.

● The control transfer instructions, on the other hand, transfer control to some predefined

address or the address somehow specified in the instruction, after their execution. For

example, INT, CALL, RET and JUMP instructions fall under this category.

● The addressing modes for sequential control transfer instructions are:

1. Immediate: In this type of addressing, immediate data is a part of instruction and appears in

the form of successive byte or bytes.

Ex: MOV AX, 0005H

In the above example, 0005H is the immediate data. The immediate data may be 8-bit or 16-bit

in size.

2. Direct: In the direct addressing mode a 16-bit memory address (offset) is directly specified in

the instruction as a part of it.

Ex: MOV AX, [5000H]

Here, data resides in a memory location in the data segment, whose effective address may be

completed using 5000H as the offset address and content of DS as segment address. The

effective address here, is 10H * DS + 5000H.

3. Register: In register addressing mode, the data is stored in a register and is referred using

the particular register. All the registers, except IP, may be used in this mode.

Ex: MOV BX, AX

9

4. Register Indirect: Sometimes, the address of the memory location, which contains data or

operand, is determined in an indirect way, using the offset register. This mode of addressing is

known as register indirect mode. In this addressing mode, the offset address of data is in either

BX or SI or DI register. The default segment is either DS or ES. The data is supposed to be

available at the address pointed to by the content of any of the above registers in the default data

segment.

Ex: MOV AX, [BX]

Here, data is present in a memory location in DS whose offset address is in BX. The effective

address of the data is given as 10H * DS+[BX].

5. Indexed: In this addressing mode, offset of the operand is stored in one of the index registers.

DS and ES are the default segments for index registers, SI and DI respectively. This is a special

case of register indirect addressing mode.

Ex: MOV AX, [SI]

Here, data is available at an offset address stored in SI in DS. The effective address, in this case,

is computed as 10*DS+[SI].

6. Register Relative: In this addressing mode, the data is available at an effective address

formed by adding an 8-bit or 16-bit displacement with the content of any one of the registers BX,

BP, SI and DI in the default (either DS or ES) segment.

Ex: MOV AX, 50H[BX]

Here, the effective address is given as 10H *DS+50H+[BX]

7. Based Indexed: The effective address of data is formed, in this addressing mode, by adding

content of a base register (any one of BX or BP) to the content of an index register (any one of SI

or DI). The default segment register may be ES or DS.

Ex: MOV AX, [BX][SI]

Here, BX is the base register and SI is the index register the effective address is computed as

10H * DS + [BX] + [SI].

8. Relative Based Indexed: The effective address is formed by adding an 8 or 16-bit

displacement with the sum of the contents of any one of the base register (BX or BP) and any

one of the index register, in a default segment.

Ex: MOV AX, 50H [BX] [SI]

Here, 50H is an immediate displacement, BX is base register and SI is an index register the

effective address of data is computed as

10H * DS + [BX] + [SI] + 50H

.9. Intrasegment Direct Mode: In this mode, the address to which the control is to be

transferred lies in the same segment in which the control transfer instruction lies and appears

directly in the instruction as an immediate displacement value. In this addressing mode, the

displacement is computed relative to the content of the instruction pointer IP.

10

The effective address to which the control will be transferred is given by the sum of 8 or 16-bit

displacement and current content of IP. In the case of jump instruction, if the signed displacement

(d) is of 8-bits (i.e –128<d<+128) we term it as short jump and if it is of 16-bits (i.e-32,

768<d<+32,768) it is termed as long jump.

10. Intrasegment Indirect Mode: In this mode, the displacement to which the control is to

be transferred, is in the same segment in which the control transfer instruction lies, but it is passed

to the instruction indirectly. Here, the branch address is found as the content of a register or a

memory location. This addressing mode may be used in unconditional branch instructions.

11. Intersegment Direct: In this mode, the address to which the control is to be transferred

is in a different segment. This addressing mode provides a means of branching from one code

segment to another code segment. Here, the CS and IP of the destination address are specified

directly in the instruction.

12. Intersegment Indirect: In this mode, the address to which the control is to be transferred

lies in a different segment and it is passed to the instruction indirectly, i.e contents of a memory

block containing four bytes, i.e IP (LSB), IP(MSB), CS(LSB) and CS (MSB) sequentially. The

starting address of the memory block may be referred using any of the addressing modes, except

immediate mode.

Pin Diagram of 8086:
● The 8086 is a 16-bit microprocessor. This microprocessor operates in single processor or

multiprocessor configurations to achieve high performance.

● The pin configuration of 8086 is shown in the figure. Some of the pins serve a particular

function in minimum mode (single processor mode) and others function in maximum mode

(multiprocessor mode).

● The 8086 signals are categorized into 3 types:

1. Common signals for both minimum mode and maximum mode.

2. Special signals which are meant only for minimum mode

3. Special signals which are meant only for maximum mode

● Common Signals for both Minimum mode and Maximum mode:

1. AD7 -AD0 : The address/ data bus lines are the multiplexed address data bus and contain

the right most eight bit of memory address or data. The address and data bits are separated by

using ALE signal.

2. AD15- AD8 : The address/data bus lines compose the upper multiplexed address/data bus.

This lines contain address bit A15 A8 or data bus D15 D8 . The address and data bits are

separated by using ALE signal.

3. A19 / S6- A18 / S3: The address/status bus bits are multiplexed to provide address signals

A19 /A16 and also status bits S6 /S3 . The address bits are separated from the status bits using

the ALE signals. The status bit S6 is always a logic 0, bit S5 indicates the condition of the

interrupt flag bit. The S4 and S3 being used for memory access indicate which segment register

is presently.

11

S4 S3 Type of segment register used

0 0 Extra segment

0 1 Stack segment

1 0 Code or no segment

1 1 Data Segment

4. BHE / S7:The bus high enable (BHE) signal is used to indicate the transfer of data over the

higher order (D15 - D8) data bus. It goes low for the data transfer over D15 - D8 and is used to

derive chip select of odd address memory bank or peripherals.

12

BHE A0 Indication

0 0 Whole word

0 1 Upper byte from or to odd address

1

0

Lower byte from or to even address

1

1

None

5. RD(Read): whenever the read signal is at logic 0, the data bus receives the data from the

memory or I/O devices connected to the system

6. READY: This is the acknowledgement from the slow devices or memory that they have

completed the data transfer operation. This signal is active high.

7. INTR(Interrupt Request): Interrupt request is used to request a hardware interrupt of

INTR is held high when interrupt enable flag is set, the 8086 enters an interrupt acknowledgement

cycle after the current instruction has completed its execution.

8. TEST : This input is tested by “WAIT” instruction. If the TEST input goes low; execution will

continue. Else the processor remains in an idle state.

9. NMI(Non-maskable Interrupt): The non-maskable interrupt input is similar to INTR

except that the NMI interrupt does not check for interrupt enable flag is at logic 1, i.e, NMI is not

maskable internally by software. If NMI is activated, the interrupt input uses interrupt vector 2.

10. RESET: The reset input causes the microprocessor to reset itself. When 8086 reset, it

restarts the execution from memory location FFFF0H. The reset signal is active high and must be

active for at least four clock cycles.

11. CLK: Clock input: The clock input signal provides the basic timing input signal for processor

and bus control operation. It is asymmetric square wave with 33% duty cycle.

12. VCC (+5V): Power supply for the operation of the internal circuit

13. GND: Ground for the internal circuit

14. MN / MX : The minimum/maximum mode signal to select the mode of operation either in

minimum or maximum mode configuration. Logic 1 indicates minimum mode.

Minimum mode Signals:

The following signals are for minimum mode operation of 8086.

13

1. M / IO(Memory/IO):M / IO signal selects either memory operation or I/O operation. This

line indicates that the microprocessor address bus contains either a memory address or an I/O

port address. Signal high at this pin indicates a memory operation. This line is logically equivalent

to S2 in maximum mode.

2. INTA(Interrupt acknowledge): The interrupt acknowledge signal is a response to the

INTR input signal. The INTA signal is normally used to gate the interrupt vector number onto the

data bus in response to an interrupt request.

3. ALE(Address Latch Enable): This output signal indicates the availability of valid

address on the address/data bus, and is connected to latch enable input of latches.

4. DT / R (Data transmit/Receive): This output signal is used to decide the direction of

date flow through the bi-directional buffer. DT / R 1 Indicates transmitting and DT / R 0 indicates

receiving the data.

5. DEN(Data Enable): Data bus enable signal indicates the availability of valid data over the

address/data lines.

6. ◻◻(Write): whenever the write signal is at logic 0, the data bus transmits the data to the

memory or I/O devices connected to the system.

7. HOLD: The hold input request a direct memory access (DMA). If the hold signal is at logic 1,

the micro process stops its normal execution and places its address, data and control bus at the

high impedance state.

8. HLDA: Hold acknowledgement indicates that 8086 has entered into the hold state.

Maximum mode signal:

● The following signals are for maximum mode operation of 8086.

1. S2 , S1, S0(Status lines): These are the status lines that reflect the type of operation

being carried out by the processor. These status lines are encoded as follow

S2 S1 S0 Function

0 0 0 Interrupt Acknowledge

0 0 1 Read I/O port

0 1 0 Write I/O port

0 1 1 Halt

1 0 0 Code Access

1 0 1 Read Memory

1 1 0 Write Memory

1 1 1 Passive (In active)

14

2. LOCK : The lock output is used to lock peripherals off the system, i.e, the other system bus

masters will be prevented from gaining the system bus.

3. QS1 and QS0 (Queue status): The queue status bits shows the status of the internal

instruction queue. The encoding of these signals is as follows

QS1 QS0 Function

0 0 No operation,queue is idle

0 1 First byte of opcode

1 0 Queue is empty

1 1 Subsequent byte of opcode

4. RQ / GT1 and RQ / GT 0 (request/Grant): The request/grant pins are used by other

local bus masters to force the processor to release the local bus at the end of the processors

current bus cycle. These lines are bi- directional and are used to both request and grant a DMA

operation. RQ / GT 0 is having higher priority than RQ / GT1

15

EXPERIMENT-1

AIM:- Write a Program to add two 8 bit numbers

PROGRAM:-

8000 MOV AH,00

8002 MOV SI, A050

8005 MOV AL,[SI]

8007 INC SI

8008 MOV BL, [SI]

800A ADD AL,BL

800C INT 03

ORG A050

 DB _ _

RESULTS:-

DB _ _

INPUT DATA OUTPUT

A050 AX

A051 BX

 SI

16

EXPERIMENT-2

AIM:- Write a Program to Subtract Two 8 bit numbers

PROGRAM:-

8000 MOV AH,00

8002 MOV SI, A050

8005 MOV AL,[SI]

8007 INC SI

8008 MOV BL, [SI]

800A SUB AL,BL

800C INT 03

ORG A050

 DB _ _

 DB _ _

RESULTS:-

INPUT DATA OUTPUT

A050 AX

A051 BX

 SI

17

EXPERIMENT-3

AIM:- Write a Program to Multiply two 8 bit numbers

PROGRAM:-

8000 MOV AH,00

8002 MOV SI, A050

8005 MOV AL,[SI]

8007 INC SI

8008 MOV BL, [SI]

800A MUL BL

800C INT 03

ORG A050

 DB _ _

 DB _ _

RESULTS:-

INPUT DATA OUTPUT

A050 AX

A051 BX

 SI

18

EXPERIMENT-4

AIM:- Write a Program to Divide two 8 bit numbers

PROGRAM:-

8000 MOV AH,00

8002 MOV SI, A050

8005 MOV AL,[SI]

8007 INC SI

8008 MOV BL, [SI]

800A DIV BL

800C INT 03

ORG A050

 DB _ _

RESULTS:-

DB _ _

INPUT DATA OUTPUT

A050 AX

A051 BX

 SI

19

EXPERIMENT-5

AIM:- Write a Program to add two 16 bit numbers

PROGRAM:-

8000 MOV SI,A050

8003 MOV AX,[SI]

8005 INC SI

8006 INC SI

8007 MOV BX, [SI]

8009 ADD AX,BX

800B INT 03

ORG A050

 DW _ _ _ _

RESULTS:-

DW _ _ _ _

INPUT DATA OUTPUT

A050 AX

A052 BX

 SI

20

EXPERIMENT-6

AIM:- Write a Program to Subtract Two 16 bit numbers

PROGRAM:-

8000 MOV SI,A050

8003 MOV AX,[SI]

8005 INC SI

8006 INC SI

8007 MOV BX, [SI]

8009 SUB AX,BX

800B INT 03

ORG A050

 DW _ _ _ _

RESULTS:-

DW _ _ _ _

INPUT DATA OUTPUT

A050 AX

A052 BX

 SI

1604-19-733-

EXPERIMENT-
21

21

AIM:- Write a Program to Multiply two 16 bit numbers

PROGRAM:-

8000 MOV SI,A050

8003 MOV DX,0000

8006 MOV AX,[SI]

8008 INC SI

8009 INC SI

800A MOV BX, [SI]

800C MUL BX

800E INT 03

ORG A050

 DW _ _ _ _

RESULTS:-

DW _ _ _ _

INPUT DATA OUTPUT

A050 AX

A052 BX

 DX

 SI

1604-19-733-

EXPERIMENT-
22

22

AIM:- Write a Program to Divide two 16 bit numbers

PROGRAM:-

8000 MOV DX,0000

8003 MOV SI, A050

8006 MOV AX,[SI]

8008 INC SI

8009 INC SI

800A MOV BX, [SI]

800C DIV BX

800E INT 03

ORG A050

 DW _ _ _ _

RESULTS:-

DW _ _ _ _

INPUT DATA OUTPUT

A050 AX

A052 BX

 DX

 SI

1604-19-733-

EXPERIMENT-
23

23

AIM:- Write a Program to add n 16-Bit numbers.

PROGRAM:-

8000 MOV AX, 0000

8003 MOV SI, A050

8006 MOV CX, 0005

8009 MOV DX, 0000

Back:800C ADD AX, [SI]

800E JNC 8011 (Next)

8010 INC DX

Next: 8011 INC SI

8012 INC SI

8013 LOOP 800C (Back)

8015 INT 03

ORG A050

 DW _ _ _ _

 DW _ _ _ _

 DW _ _ _ _

 DW _ _ _ _

 DW _ _ _ _

RESULTS:-

INPUT OUTPUT

A050 AX

A052 DX

A054 CX

A056 SI

A058

1604-19-733-

EXPERIMENT-24

24

AIM:- Write a Program to find the largest of two 8-bit numbers

PROGRAM:-

8000 MOV SI,A050

8003 MOV AL, [SI]

8005 INC SI

8006 MOV BL, [SI]

8008 CMP AL,BL

800A JNC 800E (Large)

800C MOV AL,BL

Large: 800E INT 03

RESULTS:-

ORG A050

DB _ _

DB _ _

INPUT DATA OUTPUT

A050 AX

A051 BX

 SI

1604-19-733-

EXPERIMENT-25

25

AIM:- Write a Program to find the smallest of two 8-bit numbers

PROGRAM:-

8000 MOV SI, A050

8003 MOV AL, [SI]

8005 INC SI

8006 MOV BL, [SI]

8008 CMP AL,BL

800A JC 800E (Small)

800C MOV AL,BL

Small: 800E INT 03

RESULTS:-

ORG A050

DB _ _

DB _ _

INPUT DATA OUTPUT

A050 AX

A051 BX

 SI

1604-19-733-

EXPERIMENT-26

26

AIM:- Write a Program to find the largest of two 16-BIT numbers.

PROGRAM:-

8000 MOV SI, A050

8003 MOV AX, [SI]

8005 INC SI

8006 INC SI

8007 MOV BX,[SI]

8009 CMP AX,BX

800B JNC 800F (Large)

800D MOV AX,BX

Large: 800F INT 03

ORG A050

 DW _ _ _ _

 DW _ _ _ _

RESULTS:-

INPUT OUTPUT

A050 AX

A052 BX

 SI

1604-19-733-

EXPERIMENT-27

27

AIM:- Write a Program to find the smallest of two 16-BIT numbers.

PROGRAM:-

8000 MOV SI, A050

8003 MOV AX, [SI]

8005 INC SI

8006 INC SI

8007 MOV BX,[SI]

8009 CMP AX,BX

800B JC 800F (Small)

800D MOV AX,BX

Small: 800F INT 03

ORG A050

 DW _ _ _ _

RESULTS:-

DW _ _ _ _

INPUT OUTPUT

A050 AX

A052 BX

 SI

1604-19-733-

EXPERIMENT-28

28

AIM:- Write a Program to find the largest of n 8-BIT numbers.

PROGRAM:-

8000 MOV CL,04

8002 MOV SI, A050

8005 MOV AL, [SI]

Back: 8007 INC SI

8008 MOV BL,[SI]

800A CMP AL,BL

800C JNC 8010 (Large)

800E MOV AL,BL

Large: 8010 LOOP 8007 (Back)

8012 INT 03

ORG A050

 DB _ _

 DB _ _

 DB _ _

 DB _ _

RESULTS:-

DB _ _

INPUT OUTPUT

A050 AX

A051 BX

A052 CX

A053 SI

A054

1604-19-733-

EXPERIMENT-29

29

AIM:- Write a Program to find the smallest of n 8-BIT numbers.

PROGRAM:-

8000 MOV CL,04

8002 MOV SI, A050

8005 MOV AL, [SI]

Back: 8007 INC SI

8008 MOV BL,[SI]

800A CMP AL,BL

800C JC 8010 (Small)

800E MOV AL,BL

Small: 8010 LOOP 8007 (Back)

8012 INT 03

ORG A050

 DB _ _

 DB _ _

 DB _ _

 DB _ _

RESULTS:-

DB _ _

INPUT OUTPUT

A050 AX

A051 BX

A052 CX

A053 SI

A054

1604-19-733-

EXPERIMENT-30

30

AIM:- Write a Program to find the largest of n 16-BIT numbers.

PROGRAM:-

8000 MOV CL,04

8002 MOV SI, A050

8005 MOV AX, [SI]

Back: 8007 INC SI

8008 INC SI

8009 MOV BX,[SI]

800B CMP AX,BX

800D JNC 8011 (Large)

800F MOV AX,BX

Large: 8011 LOOP 8007 (Back)

8013 INT 03

ORG A050

 DW _ _ _ _

 DW _ _ _ _

 DW _ _ _ _

 DW _ _ _ _

 DW _ _ _ _

RESULTS:-

INPUT OUTPUT

A050 AX

A052 BX

A054 CX

A056 SI

A058

1604-19-733-

EXPERIMENT-31

31

AIM:- Write a Program to find the smallest of n 16-BIT numbers.

PROGRAM:-

8000 MOV CL,04

8002 MOV SI, A050

8005 MOV AX, [SI]

Back: 8007 INC SI

8008 INC SI

8009 MOV BX,[SI]

800B CMP AX,BX

800D JC 8011 (Small)

800F MOV AX,BX

Small: 8011 LOOP 8007 (Back)

8013 INT 03

ORG A050

 DW _ _ _ _

 DW _ _ _ _

 DW _ _ _ _

 DW _ _ _ _

 DW _ _ _ _

RESULTS:-

INPUT OUTPUT

A050 AX

A052 BX

A054 CX

A056 SI

A058

1604-19-733-

EXPERIMENT-32

32

AIM:- Write a Program to perform Block Transfer

PROGRAM:-

8000 MOV CL,05

8002 MOV SI, A050

8005 MOV DI, B050

Back: 8008 MOV AL, [SI]

800A MOV [DI],AL

800C INC SI

800D INC DI

800E LOOP 8008 (Back)

8010 INT 03

ORG A050

 DB _ _

 DB _ _

 DB _ _

 DB _ _

 DB _ _

RESULTS:-

INPUT DATA OUTPUT

A050 B050

A051 B051

A052 B052

A053 B053

A054 B054

1604-19-733-

33

EXPERIMENT-19

AIM:- Write a Program to sort n numbers

PROGRAM:-

8000 MOV CH,04

Loop1:8002 MOV CL,04

8004 MOV SI,A050

Loop2:8007 MOV AL, [SI]

8009 INC SI

800A CMP AL,[SI]

800C JNC 8014 (Next)

800E XCHG AL,[SI]

8010 DEC SI

8011 MOV [SI],AL

8013 INC SI

Next: 8014 DEC CL

8016 JNZ 8007 (Loop 2)

8018 DEC CH

801A JNZ 8002 (Loop 1)

801C INT 03

ORG A050

 DB _ _

 DB _ _

 DB _ _

 DB _ _

 DB _ _

1604-19-733-

34

RESULTS:-

INPUT DATA OUTPUT

A050 A050

A051 A051

A052 A052

A053 A053

A054 A054

1604-19-733-

EXPERIMENT-35

35

AIM:- Write a Program to search a 8 bit number

PROGRAM:-

8000 MOV CL,05

8002 MOV SI,A050

8005 MOV AL,45

Back: 8007 MOV BL, [SI]

8009 CMP AL,BL

800B JZ 8010 (Found)

800D INC SI

800E LOOP 8007 (Back)

Found:8010 INT 03

ORG A050

 DB _ _

 DB _ _

 DB _ _

 DB _ _

 DB _ _

RESULTS:-

INPUT DATA OUTPUT

A050 AX

A051 BX

A052 CX

A053 SI

A054

1604-19-733-

36

EXPERIMENT-21

AIM:- Write a Program to find number of 1’s in an 8 bit number

PROGRAM:-

8000 MOV SI,A050

8003 MOV AL,[SI]

8005 MOV CL,08

8007 MOV BL,00

Back: 8009 ROL AL,1

800B JNC 800E (NEXT)

800D INC BL

Next: 800E LOOP 8009 (BACK)

8010 INT 03

ORG A050

 DB _ _

RESULTS:-

INPUT DATA OUTPUT

A050 BX

 SI

1604-19-733-

37

EXPERIMENT-22

AIM:- Write a Program to find 2’s complement of a number

PROGRAM:-

8000 MOV SI,A050

8003 MOV AL,[SI]

8005 MOV AH,00

8007 NOT AL

8009 INC AL

800B INT 03

ORG A050

RESULTS:-

DB _ _

INPUT DATA OUTPUT

A050 AX

 SI

1604-19-733-

38

EXPERIMENT-23

AIM:- Write a Program to find negative of a number using NEG

PROGRAM:-

8000 MOV SI,A050

8003 MOV AL,[SI]

8005 MOV AH,00

8007 NEG AL

8009 INT 03

ORG A050

 DB _ _

RESULTS:-

INPUT DATA OUTPUT

A050 AX

 SI

	OVERVIEW OF 8086 MICROPROCESSOR ARCHITECTURE OF 8086:
	The Execution Unit (EU):
	Steps:
	Bus Interface Unit (BIU):
	8086 has Pipelining Architecture:
	REGISTER ORGANIZATION:

	General Data Registers:
	Segment Registers:
	Pointers and Index Registers:
	8086 flag register and its functions:
	Addressing modes of 8086:
	Pin Diagram of 8086:
	Minimum mode Signals:
	Maximum mode signal:
	EXPERIMENT-1
	EXPERIMENT-2
	EXPERIMENT-3
	EXPERIMENT-4

	EXPERIMENT-5
	EXPERIMENT-6
	PROGRAM:-
	PROGRAM:- (1)
	PROGRAM:- (2)
	PROGRAM:- (3)
	PROGRAM:- (4)
	PROGRAM:- (5)
	PROGRAM:- (6)
	PROGRAM:- (7)
	PROGRAM:- (8)

	EXPERIMENT-19
	RESULTS:-

	EXPERIMENT-21
	EXPERIMENT-22
	EXPERIMENT-23

