
MUFFAKHAM JAH COLLEGE OF ENGINEERING AND
TECHNOLOGY

Banjara Hills, Hyderabad, Telangana

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Academic Year 2016-2017

Table of Contents

I Contents
1. Vision of the Institution . i
2. Mission of the Institution . i
3. Department Vision . ii
4. Department Mission . ii
5. Programme Education Objectives . iii
6. Programme Outcomes . iv
7. Programme Specific Outcomes . v
8. Introduction to Data Structures

using C++ Laboratory . vi

II Programs
1. Write a C++ program to implement Insertion Sort 1
2. Write a C++ program to implement Merge Sort 3
3. Write a C++ program to implement Quick Sort 6
4. Write a C++ program to implement Stack data structure using Linear List 9
5. Write a C++ program to implement Queue data structure using Linear List 12
6. Write a C++ program to implement Circular Queue data structure using

Linear List . 16
7. Write a C++ program to implement Infix expression to Postfix Conversion

using Stacks . 20
8. Write a C++ program to implement Postfix Evaluation using stacks . . . 23
9. Write a C++ program to implement Linked List 26
10. Write a C++ program to implement Linked Stack 30
11. Write a C++ program to implement Linked Queue 34
12. Write a C++ program to implement Circular Linked List 38
13. Write a C++ program to implement Doubly Linked List 43
14. Write a C++ program to implement Polynomial Addition using Linked List 49
15. Write a C++ program to implement Sparse Matrix using Linked Repre-

sentation . 52
16. Write a C++ program to implement Binary Tree Traversal 56
17. Write a C++ program to implement Hashing 59
18. Write a C++ program to Heap sort . 64
19. Write a C++ program to implement Graph Traversal Techniques – DFS

and BFS . 69
20. Annexure - I OU prescribed programs for DS using C++ Laboratory . 73

Part I

Contents

1. Vision of the Institution

To be part of universal human quest for development and progress by contributing high
calibre, ethical and socially responsible engineers who meet the global challenge of build-
ing modern society in harmony with nature.

2. Mission of the Institution

• To attain excellence in imparting technical education from undergraduate through
doctorate levels by adopting coherent and judiciously coordinated curricular and
co-curricular programs.

• To foster partnership with industry and government agencies through collaborative
research and consultancy.

• To nurture and strengthen auxiliary soft skills for overall development and improved
employability in a multi-cultural work space.

• To develop scientific temper and spirit of enquiry in order to harness the latent
innovative talents.

• To develop constructive attitude in students towards the task of nation building
and empower them to become future leaders

• To nourish the entrepreneurial instincts of the students and hone their business
acumen.

• To involve the students and the faculty in solving local community problems through
economical and sustainable solutions.

i

3. Department Vision

To contribute competent computer science professionals to the global talent pool to meet
the constantly evolving societal needs.

4. Department Mission

Mentoring students towards a successful professional career in a global environment
through quality education and soft skills in order to meet the evolving societal needs.

ii

5. Programme Education Objectives

1. Graduates will demonstrate technical skills and leadership in their chosen fields of
employment by solving real time problems using current techniques and tools.

2. Graduates will communicate effectively as individuals or team members and be
successful in the local and global cross cultural working environment.

3. Graduates will demonstrate lifelong learning through continuing education and pro-
fessional development.

4. Graduates will be successful in providing viable and sustainable solutions within
societal, professional, environmental and ethical contexts

iii

6. Programme Outcomes

1. Engineering knowledge: Apply the knowledge of mathematics, science, engi-
neering fundamentals and an engineering specialization to the solution of complex
engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first prin-
ciples of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge
and research methods including design of experiments, analysis and interpretation
of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources,
and modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowl-
edge to assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsi-
bilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a mem-
ber or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with
the engineering community and with society at large, such as, being able to com-
prehend and write effective reports and design documentation, make effective pre-
sentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding
of the engineering and management principles and apply these to one’s own work,
as a member and leader in a team, to manage projects and in multidisciplinary
environments.

12. Lifelong learning: Recognize the need for, and have the preparation and ability to
engage in independent and lifelong learning in the broadest context of technological
change.

iv

7. Programme Specific Outcomes

The graduates will be able to:

PSO1: Demonstrate understanding of the principles and working of the hardware and
software aspects of computer systems.

PSO2: Use professional engineering practices, strategies and tactics for the development,
operation and maintenance of software

PSO3: Provide effective and efficient real time solutions using acquired knowledge in vari-
ous domains.

v

Data Structures Using C++ Lab Manual

8. Introduction to Data Structures

using C++ Laboratory

Class:
A class in C++ is a user defined type declared with keyword class that has data and
functions (also called methods) as its members whose access is governed by the three
access specifiers private, protected or public (by default access to members of a class is
private).

A class is the collection of related data and function under a single name. A C++ program
can have any number of classes. When related data and functions are kept under a class,
it helps to visualize the complex problem efficiently and effectively.

Class:

A Class is a blueprint for objects. When a class is defined, no memory is allocated. You
can imagine like a data type.

int var;

The above code specifies var is a variable of type integer; int is used for specifying variable
var is of integer type. Similarly, class are also just the specification for objects.

CSE Department, MJCET vi

Data Structures Using C++ Lab Manual

Defining the Class in C++
Class is defined in C++ programming using keyword class followed by identifier(name of
class). Body of class is defined inside curly brackets and terminated by semicolon at the
end in similar way as structure.

class class_name{

// some data

// some functions

};

Example of Class in C++

class temp

{

private:

int data1;

float data2;

public:

void func1()

{

data1=2;

}

float func2()

{

data2=3.5;

return data;

}

};

Keywords: private and public

Keyword private makes data and functions private and keyword public makes data and
functions public. Private data and functions are accessible inside that class only whereas,
public data and functions are accessible both inside and outside the class. This feature
in OOP is known as data hiding. If programmer mistakenly tries to access private data
outside the class, compiler shows error which prevents the misuse of data. Generally,
data are private and functions are public.

C++ Objects
When class is defined, only specification for the object is defined. Object has same
relationship to class as variable has with the data type. Objects can be defined in similar
way as structure is defined.

CSE Department, MJCET vii

Data Structures Using C++ Lab Manual

Syntax to Define Object in C++

class name variable name;
For the above defined class temp, objects for that class can be defined as:
temp obj1,obj2;
Here, two objects (obj1 and obj2) of temp class are defined.

Data member and Member functions
The data within the class is known as data member. The function defined within the
class is known as member function. These two technical terms are frequently used in
explaining OOP. In the above class temp, data1 and data2 are data members and func1()
and func2() are member functions

Defining Member functions outside the class:
The member functions of the class are generally defined outside the class using following
syntax:

returntype classname::functionname(list of parameters)

{

//function body

}

Accessing Data Members and Member functions
Data members and member functions can be accessed in similar way the member of
structure is accessed using member operator(.). For the class and object defined above,
func1() for object obj2 can be called using code:

obj2.func1();

Similarly, the data member can be accessed as:

object_name.data_memeber;

Note: You cannot access the data member of the above class temp because both data
members are private so it cannot be accessed outside that class.

Example to Explain Working of Object and Class in C++ Programming

#include <iostream.h>

class Rectangle

{

private:

int length;

int breadth;

CSE Department, MJCET viii

Data Structures Using C++ Lab Manual

public:

void setData(int l,int b);

int findArea();

void display();

};

void Rectangle::setData(int l,int b)

{

length=l;

breadth=b;

}

int Rectangle::findArea()

{

return (length*breadth);

}

void Rectangle::display()

{

cout<<"Rectangle Length: "<<length<<endl;

cout<<"Rectangle Breadth: "<<breadth<<endl;

}

main()

{

cout<<"Rectangle Length: "<<length<<endl;

cout<<"Rectangle Breadth: "<<breadth<<endl;

Rectangle A1,A2;

A1.setData(5,6);

A2.setData(6,7);

A1.display();

A2.display();

cout<<"Area of first rectangle is "<<A1.findArea();

cout<<"Area of second rectangle is"<<A2.findArea();

}

CSE Department, MJCET ix

Data Structures Using C++ Lab Manual

Constructors and Destructors

A Constructor is a special type of member function that is used to initialize the object
automatically when it gets created.

1. Constructor has same name as that of class and it does not have any return type.

2. It is automatically called whenever an object of that class is created.

3. It is used to initialize data members of the object and to create dynamic memory.

Syntax: ClassName(datatype var1, datatype var2, ...)

{

//initialize the data variables of the object

}

A Destructor is a special member function of a class that is automatically executed
whenever an object of its class goes out of scope

1. Destructor has same name as that of class preceded by symbol and it does not have
any return type or any parameters.
2. It is used to free dynamic memory used by the object.

Syntax:

~ClassName()

{

//free the dynamic memory of the object

}

Class Templates
Class template is a generic class that is written so that it can be used with any data type.
Syntax:

template<class T>

class NameOfTheClass

{

private:

//declare variables of generic type T

public:

//declare functions

};

CSE Department, MJCET x

Data Structures Using C++ Lab Manual

The object of a class template is declared as :

classname<datatype> objectname;

The data type specified in the object declaration is used to replace the generic datatype
T in the class template definition.
The member functions of a class template are defined outside of the class as:

template<class T>

returntype classname<T>::functionname(list of parameters)

{

}

Example:

#include <iostream>

template<class T> class Rectangle

{

private:

T length;

T breadth;

public:

void setData(T l,T b); T findArea();

void display();

};

template<class T>

void Rectangle<T>::setData(T l,T b)

{

length=l;

breadth=b;

}

template<class T>

T Rectangle<T>::findArea()

{

return (length*breadth);

}

template<class T>

void Rectangle<T>::display()

{

cout<<"Rectangle Length: "<<length<<endl;

cout<<"Rectangle Breadth: "<<breadth<<endl;

}

CSE Department, MJCET xi

Data Structures Using C++ Lab Manual

main()

{

Rectangle<int> A1;

Rectangle<float> A1;

A1.setData(5,6);

A2.setData(6.4,7.2);

A1.display();

A2.display();

cout<<"Area of first rectangle is"<<A1.findArea();

cout<<"Area of second rectangle is"<<A2.findArea();

}

CSE Department, MJCET xii

Part II

Programs

Data Structures Using C++ Lab Manual

Program 1

INSERTION SORT

Problem Definition

Write a C++ program to implement Insertion Sort

Problem Description

Step 1: The second element of an array is compared with the elements that appears
before it (only first element in this case). If the second element is smaller than first
element, second element is inserted in the position of first element. After first step, first
two elements of an array will be sorted.

Step 2: The third element of an array is compared with the elements that appears before
it (first and second element). If third element is smaller than first element, it is inserted
in the position of first element. If third element is larger than first element but, smaller
than second element, it is inserted in the position of second element. If third element is
larger than both the elements, it is kept in the position as it is. After second step, first
three elements of an array will be sorted.

CSE Department, MJCET 1

Data Structures Using C++ Lab Manual

Step 3: Similary, the fourth element of an array is compared with the elements that
appears before it (first, second and third element) and the same procedure is applied and
that element is inserted in the proper position. After third step, first four elements of an
array will be sorted.

If there are n elements to be sorted. Then, this procedure is repeated n-1 times to get
sorted list of array.

Pseudocode

for i = 2 to n-1

x = a[i]

//Insert A[j] into the sorted sequence A[1 j - 1].

for j = i - 1 to 0 and a[j] > x

do A[j + 1] = A[j]

end for

a[j + 1] = x

end for

Problem Validation
Input:

(A) enter size: 5

enter elements: 50 9 4 0 3

(B) enter size: 8

enter elements: 51 92 34 80 33 78 55 23

Output:

(A) Sorted List is : 0 3 4 9 50

(B) Sorted List is : 23 33 34 51 55 78 80 92

CSE Department, MJCET 2

Data Structures Using C++ Lab Manual

Program 2

MERGE SORT

Problem Definition

Write a C++ program to implement Merge Sort

Problem Description

MergeSort is a Divide and Conquer algorithm. It divides input array in two halves, calls
itself for the two halves and then merges the two sorted halves. The merg() function is
used for merging two halves. The merge(arr, low, mid, high) is key process that assumes
that arr[low..mid] and arr[mid+1..high] are sorted and merges the two sorted sub-arrays
into one.

MergeSort(arr[], low, high)

if high > low

1. Find the middle point to divide the array into two halves:

mid = (low+high)/2

2. Call mergeSort for first half:

Call mergeSort(a, low, mid)

3. Call mergeSort for second half:

Call mergeSort(a, mid+1,high)

4. Merge the two halves sorted in step 2 and 3:

Call merge(a, low, mid, high)

The following diagram shows the complete merge sort process for an example array {38,
27,43, 3, 9, 82, 10}. If we take a closer look at the diagram, we can see that the array
is recursively divided in two halves till the size becomes 1. Once the size becomes 1, the
merge processes comes into action and starts merging arrays back till the complete array
is merged.

CSE Department, MJCET 3

Data Structures Using C++ Lab Manual

Pseudocode

MERGESORT(A, low, high)

If low < high

mid = (low + high) /2;

MERGESORT(A, low, mid);

MERGESORT(A, mid+1, high);

MERGE(A, low, mid, high);

End If

End MERGESORT

MERGE(A,low,mid,high)

Take temporary array B[20]

i = low , j = mid+1 , k = low

While i <= mid and j <= high

If A[i] < A[j]

B[k] = A[i]

Increment k and i by 1

CSE Department, MJCET 4

Data Structures Using C++ Lab Manual

Else

B[k] = A[j]

Increment k and j by 1

End while

While i <= mid

B[k] = A[i]

Increment k and i by 1

End while

While j <= mid

B[k] = A[j]

Increment k and j by 1

End while

Copy B[] into A[]

End MERGE

Problem Validation
Input:

(A) enter size: 5

enter elements: 5 4 10 13 6

(B) enter size: 10

enter elements: 9 8 7 6 4 0 3 2 1 5 10

Output:

(A) Sorted List is : 4 5 6 10 13

(B) Sorted List is : 1 2 3 4 5 6 7 8 9 10

CSE Department, MJCET 5

Data Structures Using C++ Lab Manual

Program 3

QUICK SORT

Problem Definition

Write a C++ program to implement Quick Sort

Problem Description

Like Merge Sort, QuickSort is a Divide and Conquer algorithm. The basic idea of Quick
sort is described below:

1. Choose a pivot value. We take the value of the first element as pivot value, but it
can be any value.

2. Partition. Rearrange elements in such a way, that all elements which are lesser than
the pivot go to the left part of the array and all elements greater than the pivot,
go to the right part of the array. Values equal to the pivot can stay in any part of
the array. Notice, that array may be divided in non-equal parts.

3. Sort both parts. Apply quicksort algorithm recursively to the left and the right
parts.

Partition algorithm in detail There are two indices i and j and at the very beginning

of the partition algorithm i points to the first element in the array and j points to the last
one. Then algorithm moves i forward, until an element with value greater or equal to the
pivot is found. Index j is moved backward, until an element with value lesser or equal
to the pivot is found. If i ≤ j then they are swapped and i steps to the next position (i
+ 1), j steps to the previous one (j - 1). Algorithm stops, when i becomes greater than
j. After partition, all values before i-th element are less or equal than the pivot and all
values after j-th element are greater or equal to the pivot.

CSE Department, MJCET 6

Data Structures Using C++ Lab Manual

Pseudocode

QuickSort(a, low, high)

If low < high

i = low,j = high

pivot = a[low]

//partition algorithm

while i < j

while i <= high and a[i] <= pivot

Inc i by 1

CSE Department, MJCET 7

Data Structures Using C++ Lab Manual

while j >= low and a[j] > pivot

Inc j by 1

if i < j

swap a[i] and a[j]

End while

swap a[low] and a[j]

Recursive Call - QuickSort(a,low,j-1)

Recursive Call - QuickSort(a,j+1,high)

Problem Validation

Input:

(A) enter size: 5

enter elements: 5 4 10 13 6

(B) enter size: 10

enter elements: 9 8 7 6 4 0 3 2 1 5 10

Output:

(A) Sorted List is : 4 5 6 10 13

(B) Sorted List is : 1 2 3 4 5 6 7 8 9 10

CSE Department, MJCET 8

Data Structures Using C++ Lab Manual

Program 4

STACK DATA STRUCTURE

Problem Definition

Write a C++ program to implement Stack data structure using Linear List

Problem Description

A stack is an abstract data type (ADT), commonly used in most programming languages.
It is named stack as it behaves like a real-world stack, for example - deck of cards or pile
of plates etc. A real-world stack allows operations at one end only. For example, we
can place or remove a card or plate from top of the stack only. Likewise, Stack ADT
allows all data operations at one end only. At any given time, We can only access the
top element of a stack. This feature makes it LIFO data structure. LIFO stands for

Last-in-first-out. Here, the element which is placed (inserted or added) last, is accessed
first. In stack terminology, insertion operation is called PUSH operation and removal
operation is called POP operation.

Like an array, a linear list stores a collection of objects of a certain type, usually denoted
as the elements of the list. The elements are ordered within the linear list in a linear
sequence. Linear lists are usually simply denoted as lists. Stack can be implemented
using various data structures like Linear list, linked list etc.

Basic Operations Stack operations may involve initializing the stack, using it and then
de-initializing it. Apart from these basic stuffs, a stack is used for the following two
primary operations -

• push() - pushing (storing) an element on the stack.

• pop() - removing (accessing) an element from the stack.

To use a stack efficiently we need to check status of stack as well. For the same purpose,
the following functionality is added to stacks -

• topelement() - get the top data element of the stack, without removing it.

• isempty() - check if stack is empty.

Stack uses a variable ”top” which always stores the index of the top element of the stack.
It is initialized with -1 at the start.

CSE Department, MJCET 9

Data Structures Using C++ Lab Manual

Push Operation Steps:

1. If stack is Full, display that stack is full and can’t push

2. Else
a. Increment top by 1
b. Place element to be pushed in arr[top] position

Pop Operation Steps:

1. If stack is empty, display that stack is empty and cannot pop

2. Else
a. Copy the top element into x as x = arr[top]
b. Decrement top by 1
c. Return x as the popped element

Pseudocode

Use variable capacity to store the max. capacity of the stack Use variable arr to store
the stack

Constructor

Stack(int c)

capacity = c

arr = new T[capacity]

top = -1

Destructor

~Stack()

delete [] arr

size()

return top+1

isempty()

If top==-1

Return true

Else

Return false

push(element)

if top < capacity-1

arr[++top] = element

else

display "Stack is Full\n"

CSE Department, MJCET 10

Data Structures Using C++ Lab Manual

pop()

if Stack is Empty

Display "Stack is Empty. Cannot Pop\n"

else

return arr[top--]

topelement()

if Stack is Empty

Display "Stack is Empty. No top element\n"

else

return arr[top]

display()

display "Stack contents are\n"

if Stack is not empty

for i = top to 0

display arr[i]

else

display "Nil\n"

Problem Validation

Input: None

Output:

Stack Contents are:

90 80 70 60 50 40

Size of the stack is 6

Popped element is 90

Popped element is 80

Stack Contents are:

70 60 50 40

Top element is 70

Size of the Stack is 4

CSE Department, MJCET 11

Data Structures Using C++ Lab Manual

Program 5

QUEUE DATA STRUCTURE

Problem Definition

Write a C++ program to implement Queue data structure using Linear List

Problem Description

Queue is also an abstract data type or a linear data structure, in which the first element is
inserted from one end called REAR(also called tail), and the deletion of existing element
takes place from the other end called as FRONT(also called head). This makes queue as
FIFO data structure, which means that element inserted first will also be removed first.

The process to add an element into queue is called Enqueue and the process of removal
of an element from queue is called Dequeue.

Basic operations associated with queues -

• enqueue() - add (store) an item to the queue.

• dequeue() - remove (access) an item from the queue.

Few more functions are required for queue are -

• frontelement() - get the element at front of the queue without removing it.

• rearelement() - get the element at rear end of the queue without removing it.

• isfull() - checks if queue is full. [condition rear > capacity then Q is full]

• isempty() - checks if queue is empty. [condition rear = = front = = -1]

• size() - returns the no. of elements in the queue.

CSE Department, MJCET 12

Data Structures Using C++ Lab Manual

In queue, we use variable ”front” to store the index just before the first element and
variable ”rear” to store the index of last element in the queue. These variables are
initialized to -1 at the start.

Enqueue Operation Steps:

1. If Queue is full then
a. Display Queue is full, cannot insert element

2. Else
a. Increment rear by 1
b. Place new element at arr[front] position

Dequeue Operation Steps:

1. If Queue is empty then a. Display Queue is empty, cannot remove element

2. Else
a. Increment front by 1
b. Return arr[front] as the removed element

Pseudocode Use variable capacity to store the max. capacity of the queue

Use variable arr to store the queue

Constructor

Queue(int c)

capacity = c

arr = new T[capacity]

front = -1

rear = -1

Destructor

~Queue()

delete [] arr;

size()

if rear > front

return rear-front

else

return front-rear

isempty()

if front==-1 and rear==-1

return true

else

return false

CSE Department, MJCET 13

Data Structures Using C++ Lab Manual

enqueu(element)

f rear <= capacity

inc rear by 1

else

arr[rear] = element

display "Queue is Full"

dequeue()

if Queue is empty

display " Queue is Empty. Cannot remove"

else

inc front by 1

return arr[front]

frontelement()

if Queue is empty

display "Queue is Empty. No front element"

else

return arr[front+1]

rearelement()

if Queue is empty

display "Queue is Empty. No rear element"

else

return arr[rear]

display()

if Queue is not empty

for i = front+1 to rear

display arr[i]

else

display "Nil"

Use variable capacity to store the max. capacity of the queue Use variable arr to store
the queue

CSE Department, MJCET 14

Data Structures Using C++ Lab Manual

Problem Validation

Input: Execute the above pseudo code

Output:

Queue Contents are:

90 80 70 60 50 40

Size of the Queue is 6

Removed element is 90

Removed element is 80

Queue Contents are:

70 60 50 40

Front element is 70

Rear element is 40

Size of the Queue is 4

CSE Department, MJCET 15

Data Structures Using C++ Lab Manual

Program 6

CIRCULAR QUEUE DATA STRUCTURE

Problem Definition

Write a C++ program to implement Circular Queue data structure using Linear List

Problem Description

The disadvantage of queue is that when rear variable value reaches end of the queue i.e
capacity-1, then even if there is space in queue, we will not be able to insert new elements
as Queue full condition will be satisfying. To rectify this problem, we use circular queue.

In circular queue, last element is connected to first element. When rear reaches the end
of Queue, then it can move in circular motion to front of the queue.

Initially, front and rear variables are assigned to 0.
To increment front and rear variables in circular motion, following formulae are used:

front=(front+1) % capacity
rear = (rear+1) % capacity

CSE Department, MJCET 16

Data Structures Using C++ Lab Manual

Enqueue Operation Steps:

1. If Queue is full then
a. Display Queue is full, cannot insert element

2. Else
a. Increment rear by 1 circularly using rear=(rear+1) % capacity
b. Place new element at arr[front] position

Dequeue Operation Steps:

1. If Queue is empty then
a. Display Queue is empty, cannot remove element

2. Else
a. Increment front by 1 circularly using front=(front+1) % capacity
b. Return arr[front] as the removed element

Pseudocode

Use variable i to store the size of the circular queue Use variable capacity to store the
max. capacity of the circular queue Use variable arr to store the circular queue

CSE Department, MJCET 17

Data Structures Using C++ Lab Manual

Constructor

Queue(c)

capacity = c

arr = new T[capacity]

front = 0; rear = 0; i = 0;

Destructor

~Queue()

delete [] arr

size()

return i

isempty()

if front==rear

return true

else

return false

push(element)

if circular queue is full then

display " circular queue is Full"

else

rear = (rear+1) % capacity

arr[rear] = elem

inc i by 1

pop()

if circular queue is empty then

display "Circular Queue is Empty. Cannot remove"

else

front = (front+1) % capacity

return arr[front]

frontelement()

if circular queue is empty then

display "Circular Queue is Empty. No front element"

else

return arr[(front+1) % capacity]

rearelement()

if circular queue is empty then

display "Circular Queue is Empty. No rear element"

else

return arr[rear]

CSE Department, MJCET 18

Data Structures Using C++ Lab Manual

display()

if circular queue is empty then

display "Circular Queue is Empty"

else

j = (front+1) % capacity

while j!=rear

display arr[j]

j = (j+1) % capacity

display arr[rear]

Problem Validation

Input: None

Output:

Queue Contents are:

90 80 70 60 50 40

Size of the Queue is 6

Removed element is 90

Removed element is 80

Queue Contents are:

70 60 50 40

Front element is 70

Rear element is 40

Size of the Queue is 4

CSE Department, MJCET 19

Data Structures Using C++ Lab Manual

Program 7

INFIX TO POSTFIX CONVERSION

Problem Definition

Write a C++ program to implement Infix expression to Postfix Conversion using Stacks

Problem Description

Infix expression is the expression of the form a op b. When an operator is in-between
every pair of operands. The Postfix expression is the expression of the form a b op. When
an operator is written after its operands, then it is called as postfix expression.

Why postfix representation of the expression? The compiler scans the expression either
from left to right or from right to left.

Consider the below expression: a + b * c - d
The compiler first scans the expression to evaluate the expression b * c, then again scan
the expression to add a to it. The result is then subtracted from d after another scan.
The repeated scanning makes it very in-efficient. It is better to convert the expression to
postfix(or prefix) form before evaluation. The corresponding expression in postfix form
is: abc*d++. The postfix expressions can be evaluated easily using a stack.

Infix expression to Postfix Conversion Algorithm

1. Read the infix expression from the user.

2. Scan the infix expression from left to right.

3. Let the current infix character is x

4. If x is an operand(i.e digit), display it.

5. Else If x is an ’(’, push it to the stack.

6. Else If x is an ’)’, pop and output from the stack until an ’(’ is encountered.

7. Else If the precedence of x is less than or equal to the precedence of stack top,then

a. Repeatedly pop and display stack elements as long as precedence of x is less
than or equal to the precedence of stack top

b. Then, Push x onto the stack.

8. Repeat steps 4-7 until infix expression is scanned.

9. Pop and output from the stack until it is not empty.

CSE Department, MJCET 20

Data Structures Using C++ Lab Manual

Pseudocode

Read infix expression from user and store it in char array infix[]
Declare a stack st of size 50

st.push(’#’)

len = strlen(infix)

display "Postfix expression is"

for i = 0 to len-1

x = infix[i]

if x==’(’

st.push(x)

else if x==’)’

while stack top != ’(’

display popped element st.pop()

st.pop()

CSE Department, MJCET 21

Data Structures Using C++ Lab Manual

else if x is a digit

display x

else

while precendence(x) <= precendence(stack top)

display popped element st.pop()

st.push(x)

while stack is not empty

display popped element st.pop()

precendence(x)

’*’ , ’/’ := (2)

’+’, ’-’ := (1)

’(’, ’#’ := (0)

Problem Validation

Input:

Enter the infix expression: (a+b) * (c-d) / e

Output:

Postfix expression is : ab + cd-*e/

CSE Department, MJCET 22

Data Structures Using C++ Lab Manual

Program 8

POSTFIX EVALUATION

Problem Definition

Write a C++ program to implement Postfix Evaluation using stacks

Problem Description

The Postfix notation is used to represent algebraic expressions. The expressions written
in postfix form are evaluated faster compared to infix notation as parenthesis are not
required in postfix.

Following is algorithm for evaluation postfix expressions.

1. Create a stack to store operands (or values).

2. Read the postfix expression from the user

3. Scan the given postfix expression from left to right

4. Let x be the current postfix character

a. If the element is a number, push it into the stack

b. If the element is a operator, pop 2 operands from stack. Evaluate the operator
and push the result back to the stack

5. When the postfix expression is ended, the number in the stack is the final answer

Example:

Evaluate the postfix expression 2 3 4 + * 6 -

CSE Department, MJCET 23

Data Structures Using C++ Lab Manual

Result is 8

Pseudocode

Read postfix expression from the user

Declare a stack st of some size

len = strlen(postfix)

CSE Department, MJCET 24

Data Structures Using C++ Lab Manual

for i = 0 to len-1

x = postfix[i]

if x is a digit

st.push(x=’0’)

else

a = st.pop()

b = st.pop()

switch(x)

case ’+’:

c = b+a;

st.push(c);

case ’-’:

c = b-a;

st.push(c);

case ’*’:

c = b*a;

st.push(c);

case ’/’:

c = b/a;

st.push(c);

display "result is" st.pop()

Problem Validation

Input: Enter the postfix expression: 2 4 + 3 - 2 * 3 /

Output: result is 2

CSE Department, MJCET 25

Data Structures Using C++ Lab Manual

Program 9

LINKED LIST

Problem Definition

Write a C++ program to implement Linked List

Problem Description

Linked List is a sequence of nodes which contains date elements. Each node has two
parts:

• Data - it stores data i.e an element.

• Next - it contains a pointer/link to next node.

The first node is pointed to by a pointer called ”first”.

Basic Operations

Following are the basic operations supported by a linked list:-

• Constructor - initializes pointer first as NULL to indicate linked list is initially
empty

• Insertion - add an element at the given position in the linked list.

• Deletion - delete an element from the given position in the linked list.

• Display - displaying complete linked list.

• isempty - checks whether the linked list is empty or not. [condition: first==NULL]

• Length - finds the number of nodes in the linked list.

• Destructor - deletes/frees memory used by all the nodes of the linked list

CSE Department, MJCET 26

Data Structures Using C++ Lab Manual

Insertion Operation: Inserts the given element at given position pos

1. Create a new node ”temp” to store the new element to be inserted.

2. Initialize data part of temp to element value and next part to NULL.

3. If element is to be inserted at position 1 i.e beginning of the list then,

• Make temp− >next point to first

• Make first point to temp

4. Else, i.e element is to be inserted in middle or end of the list,

• Take another pointer p and using a for loop make it point to (pos-1)th node

• Make temp− >next point to p− >next

• Make p− >next point to temp

Removal Operation: Removes and returns the element from given position pos=>

remove(pos)

1. Declare node pointer ”temp” and some variable x. temp will always point to the
node to be removed and x stores the data of the removed element.

2. If element is to be removed from position 1 i.e first node, then

• Make temp point to first node

• Make first point to next node i.e second node

• Store the data of temp node in x

• Delete temp node

3. Else, i.e if the element is to be removed from middle or end, then,

• Take another pointer p and using a for loop make it point to (pos-1)th node

• Make temp point to p− >next

• Make p− >next point to temp− >next

• Store the data of temp node in x

• Delete temp node

4. Return the x value as the removed element

CSE Department, MJCET 27

Data Structures Using C++ Lab Manual

Pseudocode

Constructor

Chain()

First = NULL

destructor

~Chain()

Node<T> *temp = first

While temp!=NULL

first = first->next

delete temp

temp = first

isempty()

if first == NULL

return true

else

return false

insert(element,pos)

Node<T> *temp = new Node<T>

temp->data = element

temp->next = NULL

if pos == 1

temp->next = first

first = temp

else

Node<T> *p = first

for i=1 to pos-1

p = p->next

temp->next = p->next

p->next = temp

remove(pos)

Node<T> *temp

T x

If pos == 1

temp = first

first = first->next

x = temp->data

delete temp

else

Node<T> *p = first

for i=1 to pos-1

CSE Department, MJCET 28

Data Structures Using C++ Lab Manual

p = p->next

temp = p->next

p->next = temp->next

x = temp->data

delete temp

return x

display()

Node<T> *temp = first

While temp!=NULL

Display temp->data

temp = temp->next

length()

Node<T> *temp = first

i = 0

While temp!=NULL

temp = temp->next

inc i by 1

return i

Problem Validation

Input: None

Output:

Queue Contents are:

90 80 70 60 50 40

Size of the Queue is 6

Removed element is 90

Removed element is 80

Queue Contents are:

70 60 50 40

Front element is 70

Rear element is 40

Size of the Queue is 4

CSE Department, MJCET 29

Data Structures Using C++ Lab Manual

Program 10

LINKED STACK

Problem Definition

Write a C++ program to implement Linked Stack

Problem Description

Stack data structure can also be implemented using linked list. The “top” pointer is used
to point to the top of the stack. The first node is always considered as top of the stack.
In stack, we can only insert and delete elements from top of the stack. It means that in
Linked Stack, we can insert and delete nodes only from the beginning of the linked stack.

CSE Department, MJCET 30

Data Structures Using C++ Lab Manual

CSE Department, MJCET 31

Data Structures Using C++ Lab Manual

Pseudocode

Constructor

LinkedStack()

top = NULL

destructor

~LinkedStack()

Node<T> *temp = top

While temp!=NULL

top = top->next

delete temp

temp = top

isempty()

if top == NULL

return true

else

return false

push(element)

Node<T> *temp = new Node<T>

temp->data = element

temp->next = top

top = temp

topelement()

if Stack is empty then

display "Stack is empty"

else

return top->data

pop()

if Stack is empty then

display "Stack is empty"

else

Node<T> *temp = top

top = top->next

x = temp->data

delete temp

return x

CSE Department, MJCET 32

Data Structures Using C++ Lab Manual

display()

Node<T> *temp = top

While temp!=NULL

Display temp->data

temp = temp->next

length()

Node<T> *temp = top

i = 0

While temp!=NULL

temp = temp->next

inc i by 1

return i

Problem Validation

Input: None

Output:

Linked Stack Contents are:

90 80 70 60 50 40

Size of the stack is 6

Popped element is 90

Popped element is 80

Linked Stack Contents are:

70 60 50 40

Top element is 70

Size of the Linked Stack is 4

CSE Department, MJCET 33

Data Structures Using C++ Lab Manual

Program 11

LINKED QUEUE

Problem Definition

Write a C++ program to implement Linked Queue

Problem Description

Queue data structure can also be implemented using a linked list. The “front” pointer
points to the first node of the linked queue which is considered as the front end of the
queue. The deletions can be done only at the front end of the linked queue. The “rear”
pointer points to the last node of the linked queue which is considered as the rear end of
the queue. The insertion of new elements can be done only at rear end of linked queue.

CSE Department, MJCET 34

Data Structures Using C++ Lab Manual

CSE Department, MJCET 35

Data Structures Using C++ Lab Manual

Pseudocode

Constructor

LinkedQueue()

Front = NULL

Rear = NULL

destructor

~LinkedQueue()

Node<T> *temp=front

While temp!=NULL

front = front->next

delete temp

temp = front

isempty()

if front == NULL

return true

else

return false

display()

Node<T> *temp = front

While temp!=NULL

Display temp->data

temp = temp->next

length()

Node<T> *temp = front

i = 0

while temp!=NULL

temp = temp->next

inc i by 1

return i

insert(element)

Node<T> *temp = new Node<T>

temp->data = elem

temp->next = NULL

if rear == NULL

front = temp

rear = temp

else

rear->next = temp

rear = temp

CSE Department, MJCET 36

Data Structures Using C++ Lab Manual

remove()

if Queue is empty then

display "queue is empty"

else

Node<T> *temp = front

front = front->next

x = temp->data

delete temp

return x

frontelement()

if Queue is empty then

display "queue is empty"

else

return front->data

rearelement()

if Queue is empty then

display "queue is empty"

else

return rear->data

Problem Validation

Input: None

Output:

Queue Contents are:

90 80 70 60 50 40

Size of the Queue is 6

Removed element is 90

Removed element is 80

Queue Contents are:

70 60 50 40

Front element is 70

Rear element is 40

Length of the Queue is 4

CSE Department, MJCET 37

Data Structures Using C++ Lab Manual

Program 12

CIRCULAR LINKED LIST

Problem Definition

Write a C++ program to implement Circular Linked List

Problem Description

Circular linked lists can be used to help the traverse the same list again and again if
needed. A circular list is very similar to the linear list where in the circular list the
pointer of the last node points not NULL but the first node.

Linked List:

Circular Linked List:

Each node has 2 fields:

• Data field :=> stores the element value

• Next pointer :=> points to the next node in the list

The first node is pointed to by a pointer called ”first”.

CSE Department, MJCET 38

Data Structures Using C++ Lab Manual

Basic Operations

Following are the basic operations supported by a linked list:-

• Constructor - initializes pointer first as NULL to indicate circular linked list is
initially empty

• Insertion - add an element at the given position in the circular linked list.

• Deletion - delete an element from the given position in the circular linked list.

• Display - displaying complete circular linked list.

• isempty - checks whether the linked list is empty or not. [condition: first==NULL]

• Length - finds the number of nodes in the circular linked list.

• Destructor - deletes/frees memory used by all the nodes of the circular linked list

Insertion Operation: Inserts the given element at given position pos

1. Create a new node “temp” to store the new element to be inserted.

2. Initialize data part of temp to element value and next part to NULL.

3. If circular linked list is empty i.e len is 0 and we need to insert the first node in the
list then

a. Make first point to newly created node temp

b. Make temp− >next point back to first

4. If element is to be inserted at position 1 i.e beginning of the list then,

a. Make temp− >next point to first

b. Take a pointer p and using for loop make it point to last node in the list

c. Make first point to temp

d. Make p− >next(i.e last node) point to first

5. Else, i.e element is to be inserted in middle or end of the list,

a. Take a pointer p and using a for loop make it point to (pos-1)th node

b. Make temp− >next point to p− >next

c. Make p− >next point to temp

6. Increment “len” by 1

CSE Department, MJCET 39

Data Structures Using C++ Lab Manual

Removal Operation: Removes and returns the element from given position pos=>

remove(pos)

1. Declare node pointer “temp” and some variable x. temp will always point to the
node to be removed and x stores the data of the removed element.

2. If the circular linked list has only one node (i.e len is 1) and we need to delete that
node, i.e after deletion, list will become empty, then

a. Assign first to NULL

b. Make temp point to first pointer

c. Store the data of temp node in x

d. Delete temp node

3. If element is to be removed from position 1 i.e first node , then

a. Take a pointer p and using for loop make it point to last node in the list

b. Make temp point to first pointer

c. Make first point to next node i.e second node

d. Make last node i.e (p− >next) point to first node

e. Store the data of temp node in x

f. Delete temp node

4. Else, i.e if the element is to be removed from middle or end, then

a. Take a pointer p and using a for loop make it point to (pos-1)th node

b. Make temp point to p− >next

c. Make p− >next point to temp− >next

d. Store the data of temp node in x

e. Delete temp node

Pseudocode

Constructor

CircularChain()

first =NULL

len = 0

destructor

~CircularChain()

Node<T> *temp = first

for i=1 to len

first = first->next

delete temp

temp = first

CSE Department, MJCET 40

Data Structures Using C++ Lab Manual

isempty()

if first == NULL

return true

else

return false

display()

Node<T> *temp = first

For i=1 to

Display temp->data

temp = temp->next

length()

return len

insert(element,pos)

Node<T> *temp = new Node<T>

temp->data = elem

temp->next = NULL

if len == 0

first = temp

temp->next = first

else if pos == 1

temp->next = first

Node<T> *p = first

for i=1 to len-1

p = p->next

first = temp

else

len++

p->next = first

Node<T> *p = first

for i=1 to pos-2

p = p->next

temp->next = p->next

p->next = temp

remove(int pos)

Node<T> *temp = first

if len == 1

first = NULL

x = temp->data

delete temp

else if pos == 1

Node<T> *p = first

CSE Department, MJCET 41

Data Structures Using C++ Lab Manual

for i=1 to len-1

p = p->next

first = first->next

p->next = first

x = temp->data

delete temp

else

len--

Node<T> *p = first

for i=1 to pos-2

p = p->next

temp = p->next

p->next = temp->next

x = temp->data

delete temp

return x

Problem Validation

Input: None

Output:

Circular Linked List Contents :

10 20 30 40 50

Removed element from position 2 is:20

Length of the Circular Linked List is 4

Circular Linked List Contents : 10 30 40 50

CSE Department, MJCET 42

Data Structures Using C++ Lab Manual

Program 13

DOUBLY LINKED LIST

Problem Definition

Write a C++ program to implement Doubly Linked List

Problem Description

A doubly linked list is a list that contains pointer links to next and previous nodes. Unlike
singly linked lists where traversal is only one way, doubly linked lists allow traversals in
both ways.

Each node has 3 fields:

• Prev pointer :=> points to the previous node in the list

• Data field :=> stores the element value

• Next pointer :=> points to the next node in the list

TThe “first” pointer points to the first node in the list and the “last” pointer points to
the last node in the list.

Basic Operations

Following are the basic operations supported by a linked list:-

• Constructor - initializes pointer first as NULL, last as NULL and len as 0 to
indicate doubly linked list is initially empty

• Insertion - add an element at the given position in the doubly linked list.

• Deletion - delete an element from the given position in the doubly linked list.

• Display - displaying complete doubly linked list.

CSE Department, MJCET 43

Data Structures Using C++ Lab Manual

• isempty - checks whether the doubly linked list is empty or not. [condition =>

first==NULL and last == NULL]

• Length - finds the number of nodes in the doubly linked list.

• Destructor - deletes/frees memory used by all the nodes of the doubly linked list

Insertion Operation: Inserts the given element at given position pos

1. Create a new node “temp” to store the new element to be inserted

2. Initialize data part of temp to element value and prev part and next part to NULL.

3. If doubly linked list is empty i.e len is 0 and we need to insert the first node in the
list then

a. Make both “first” and “last” pointers point to newly created node “temp”

4. If element is to be inserted at position 1 i.e beginning of the list then,

a. Make temp− >next point to first

b. Make first− >prev point to temp

c. Make first point to temp

5. If element is to be inserted at last position i.e len+1 then,

a. Make temp− >next point to last

b. Make last− >next point to temp

c. Make last point to temp

6. Else, i.e element is to be inserted in middle of the list,

a. Take a pointer p and using a for loop make it point to (pos-1)th node

b. Take a pointer q and make it point to (pos)th node i.e p− >next

c. Make p− >next point to temp

d. Make p− >next point to temp

e. Make temp− >prev point to p

f. Make temp− >next point to q

7. Increment “len” by 1

Removal Operation: Removes and returns the element from given position pos=>

remove(pos)

1. Declare node pointer “temp” and some variable x. temp will always point to the
node to be removed and x stores the data of the removed element.

2. If the doubly linked list has only one node (i.e len is 1) and we need to delete that
node, i.e after deletion, list will become empty, then

CSE Department, MJCET 44

Data Structures Using C++ Lab Manual

a. Assign first,last to NULL

b. Make temp point to first pointer

c. Store the data of temp node in x

d. Delete temp node

3. If element is to be removed from position 1 i.e first node , then

a. Make temp point to first pointer

b. Make first point to next node i.e second node

c. Make first− >prev point to NULL

d. Store the data of temp node in x

e. Delete temp node

4. If element is to be removed from last position i.e len , then

a. Make temp point to last pointer

b. Make last point to prev node i.e last− >prev

c. Make last− >next point to NULL

d. Store the data of temp node in x

e. Delete temp node

5. Else, i.e if the element is to be removed from middle, then

a. Take a pointer p and using a for loop make it point to (pos-1)th node

b. Make temp point to p− >next

c. Make q point to temp− >next

d. Make p− >next point to q

e. Make q− >prev point to p

f. Store the data of temp node in x

g. Delete temp node

6. Return the x value as the removed element

7. Decrement “len” by 1

CSE Department, MJCET 45

Data Structures Using C++ Lab Manual

Pseudocode

Constructor

DoublyChain()

first = NULL

last = NULL

len = 0

~DoublyChain()

Node<T> *temp = first

For i=1 to len

first = first->next

delete temp

temp = first

isempty()

if first is NULL and last is NULL

return true

else

return false

display()

Node<T> *temp = first

For i=1 to len

Display temp->data

temp = temp->next

length()

return len

insert(element,pos)

Node<T> *temp=new Node<T>

temp->data = element

temp->prev = NULL

temp->next = NULL

if len is 0

first = temp

last = temp

else if pos is 1

temp->next = first

first->prev = temp

first = temp

else if pos is len+1

temp->prev = last

last->next = temp

last = temp

CSE Department, MJCET 46

Data Structures Using C++ Lab Manual

else

Node<T> *p = first

For i=1to pos-2

p = p->next

Node<T> *q = p->next

p->next = temp

q->prev = temp

temp->prev = p

len++

temp->next = q

remove(pos)

Node<T> *temp

T x

If len is 1

temp = first

first = NULL

last = NULL

x = temp->data

delete temp

else if pos is 1

temp = first

first = first->next

first->prev = NULL

x = temp->data

delete temp

else if pos is len

temp = last

last = last->prev

last->next = NULL

x = temp->data

delete temp

else

Node<T> *p = first

Node<T> *q

For i=1 to pos-2

p = p->next

temp = p->next

q = temp->next

p->next = q

q->prev = p

x = temp->data

delete temp

return x

len--

CSE Department, MJCET 47

Data Structures Using C++ Lab Manual

Problem Validation

Input: None

Output:

Doubly Linked List Contents :

10 20 30 40 50

Removed element from position 2 is:20

Length of the Doubly Linked List is 4

Doubly Linked List Contents : 10 30 40 50

CSE Department, MJCET 48

Data Structures Using C++ Lab Manual

Program 14

POLYNOMIAL REPRESENTATION USING LINKED LIST

Problem Definition

Write a C++ program to implement Polynomial Addition using Linked List

Problem Description

A Polynomial has mainly two fields. exponent and coefficient.

Node of a Polynomial:

For example 3x2 + 5x + 7 will represent as follows.

In each node the exponent field will store the corresponding exponent and the coefficient
field will store the corresponding coefficient. Link field points to the next item in the
polynomial.
Algorithm to add two polynomials using Linked Lists:

1. Take two pointers ax and bx. Make ax point to first term in Polynomial A and
make bx point to first term in Polynomial B

2. Declare polynomial C to store the added polynomial A+B

3. While ax and bx both are not NULL i.e didn’t reach the end of A and B, then

a. If Exponent of ax is equal to Exponent of bx, then

i. Find the Sum of coefficients of ax and bx

CSE Department, MJCET 49

Data Structures Using C++ Lab Manual

ii. If sum > 0,then insert the new term (exp of ax or bx, sum) into polynomial
C

iii. Make ax and bx point to next term in polynomials A,B

b. Else if Exponent of ax ¿ Exponent of bx, then

i. Insert the term from polynomial A into polynomial C

ii. Make ax point to next term in A

c. Else, i.e Exponent of ax ¡ Exponent of bx, then

i. Insert the term from polynomial B into polynomial C

ii. Make bx point to next term in B

4. The above while loop ends if either we reached the end of polynomial A and few
terms are remaining in polynomial B (OR) we reached the end of polynomial B and
few terms are remaining in polynomial A

5. Add the remaining terms from polynomial A, if any

6. Add the remaining terms from polynomial B, if any

7. Return the resultant polynomial C

Pseudocode

Constructor

Poly()

first = NULL

last = NULL

insertback(e, c):inserts new term (exponent, coefficient) at the end

of polynomial

term<T> *temp = new term<T>

temp->coeff = c temp->exp = e

temp->next = NULL

if last is NULL

first = temp

last = temp

else

last->next = temp

last = temp

operator+(Poly<T> &b)

term<T> *ax = first

term<T> *bx = b.first

Poly<T> c

While ax!=NULL and bx!=NULL

If ax->exp is equal to bx->exp

CSE Department, MJCET 50

Data Structures Using C++ Lab Manual

Sum = ax->coeff + bx->coeff

If sum > 0

c.insertback(ax->exp,sum)

ax = ax->next

bx = bx->next

else if ax->exp < bx->exp

c.insertback(bx->exp,bx->coeff)

bx = bx->next

else

c.insertback(ax->exp,ax->coeff)

ax = ax->next

while ax != NULL

c.insertback(ax->exp,ax->coeff)

ax = ax->next

while bx!=NULL

c.insertback(bx->exp,bx->coeff)

bx = bx->next

return c

display()

for term<T> *temp = first;temp!=NULL;temp=temp->next

display temp->exp and temp->coeff

Problem Validation

Input:

Inserting terms (5,1), (3,2), (1,2), (0,7) in polynomial A

Inserting terms (4,2), (3,5), (2,4), (1,3) in polynomial B

Output:

Polynomial after addition is

Exp. Coeff

5 1

4 2

3 7

2 4

1 5

0 7

CSE Department, MJCET 51

Data Structures Using C++ Lab Manual

Program 15

SPARSE MATRIX REPRESENTATION USING LINKED LIST

Problem Definition

Write a C++ program to implement Sparse Matrix using Linked Representation

Problem Description

A matrix is a two-dimensional data object made of m rows and n columns, therefore
having m X n values. The most natural representation is to use two-dimensional array
A[m][n] and access the element of ith row and jth column as A[i][j]. If a large number of
elements of the matrix are zero elements, then it is called a sparse matrix.
Representing a sparse matrix by using a two-dimensional array leads to the wastage of
a substantial amount of space. Therefore, an alternative representation must be used
for sparse matrices. One such representation is to store only non- zero elements along
with their row positions and column positions. That means representing every non-zero
element by using triples (i, j, value), where i is a row position and j is a column position.

To represent a sparse matrix using linked lists, we use 4 types of nodes
1. Head node :

No. of rows in No. of Columns No. of Non Zero
sparse matrix in sparse matrix values in sparse matrix

(row) (col) (value)
Pointer to first Row node Pointer to first column node

(down) (right)

2. Row Node :

Pointer to next row node(next)
Not used (down) Pointer to data

node in this row (right)

3. Column node :

Pointer to next column node(next)
Pointer to data Not used (right)
node in this

column (down)

4. Data node :

Row no. of non Column no. of Non zero
zero value non zero value
(row) value(col) (value)
Pointer to next data Pointer to next data
node in this column node in this Row

(down) (right)

CSE Department, MJCET 52

Data Structures Using C++ Lab Manual

Pseudocode

MatrixNode(bool h,int r,int c,int v)

head=h

if head is false

row=r

col=c

value=v

down=NULL

right=NULL

else

down=NULL

right=NULL

next=NULL

Matrix()

headnode=NULL

readmatrix()

declare variables i,rs,cs,nz

display "Enter the rowsize, column size and no. of non-zero

elements in the sparse matrix"

read rs,cs,nz

headnode=new MatrixNode(false,rs,cs,nz)

CSE Department, MJCET 53

Data Structures Using C++ Lab Manual

MatrixNode **rownode=new MatrixNode * [rs]

MatrixNode **colnode=new MatrixNode * [cs]

For i=0 to rs-1

rownode[i]=new MatrixNode(true,0,0,0)

MatrixNode *lastrow=rownode[0]

initialize currentrow=0

MatrixNode *lastcol[cs]

For i=0 to cs-1

colnode[i]=new MatrixNode(true,0,0,0)

lastcol[i]=colnode[i]

headnode->right=colnode[0]

headnode->down=rownode[0]

For i=0 to nz-1

declare r,c,v

display "enter the non zero term"

read r,c,v

MatrixNode *datanode=new MatrixNode(false,r,c,v)

If r > currentrow

currentrow=r

lastrow=rownode[currentrow]

lastrow->right=datanode

lastrow=datanode

lastcol[c]->down=datanode

lastcol[c]=datanode

for i=0 to rs-2

rownode[i]->next=rownode[i+1]

for i=0 to cs-2

colnode[i]->next=colnode[i+1]

display()

display "Matrix is RowNo.\tColNo.\tValue\n"

MatrixNode *row=headnode->down

for i=0 to headnode->row

MatrixNode *temp=row->right

While temp!=NULL

Display temp->row,temp->col,temp->value

temp=temp->right

row=row->next;

~Matrix()

MatrixNode *temp,*p

declare i,j=0

MatrixNode *row=headnode->down

For i=0 to headnode->row

CSE Department, MJCET 54

Data Structures Using C++ Lab Manual

temp=row

row=row->next

while temp != NULL

p=temp->right

display j++

delete temp

temp=p

temp=headnode->right

for i=0 to headnode->col

p=temp->next

display j++

delete temp

temp=p

delete headnode

display j++

Problem Validation

Input:

Enter the rowsize, column size and no. of non-zero

elements in the sparse matrix: 5 4 4

enter the rowno, colon and non zero value:0 0 50

enter the rowno, colon and non zero value:1 2 30

enter the rowno, colon and non zero value:2 3 25

enter the rowno, colon and non zero value:3 1 15

Output:

Sparse Matrix is

RowNo ColNo Value

0 0 50

1 2 30

2 3 25

3 1 15

CSE Department, MJCET 55

Data Structures Using C++ Lab Manual

Program 16

BINARY TREE TRAVERSALS

Problem Definition

Write a C++ program to implement Binary Tree Traversal

Problem Description

A binary tree is a tree data structure in which each node has at most two children, which
are referred to as the left child and the right child.

Preorder traversal: To traverse a binary tree in Preorder, following operations are
carried- out (i) Visit the root, (ii) Traverse the left subtree, and (iii) Traverse the right
subtree. Therefore, the Preorder traversal of the above tree will outputs: 7, 1, 0, 3, 2, 5,
4, 6, 9, 8, 10

Inorder traversal: To traverse a binary tree in Inorder, following operations are
carried-out (i) Traverse the left most subtree starting at the left external node, (ii) Visit
the root, and (iii) Traverse the right subtree starting at the left external node. Therefore,
the Inorder traversal of the above tree will outputs: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Postorder traversal: To traverse a binary tree in Postorder, following operations are
carried- out (i) Traverse all the left external nodes starting with the left most subtree
which is then followed by bubble-up all the internal nodes, (ii) Traverse the right subtree
starting at the left external node which is then followed by bubble-up all the internal
nodes, and (iii) Visit the root. Therefore, the Postorder traversal of the above tree will
outputs: 0, 2, 4, 6, 5, 3, 1, 8, 10, 9, 7

CSE Department, MJCET 56

Data Structures Using C++ Lab Manual

Pseudocode

constructor

binarytree()

root=NULL

createtree(element,binarytreenode<T> *p,binarytreenode<T> *q)

root=new binarytreenode<T>

root->data=element root->left=p

root->right=q

inorder(binarytreenode<T> *temp)

if temp != NULL

inorder(temp->left)

display temp->data

inorder(temp->right)

preorder(binarytreenode<T> *temp)

if temp != NULL

display temp->data

preorder(temp->left)

preorder(temp->right)

postorder(binarytreenode<T> *temp)

if temp != NULL

postorder(temp->left)

postorder(temp->right)

display temp->data

levelorder(binarytreenode<T> *temp)

LinkedQueue<binarytreenode<T> *> q

While temp != NULL

Display temp->data

If temp->left != NULL

q.push(temp->left)

if temp->right != NULL

q.push(temp->right)

if q is empty

return

else

temp=q.pop()

CSE Department, MJCET 57

Data Structures Using C++ Lab Manual

Problem Validation

\noindent{\bf Input:} None

\noindent{\bf Output :}

Preorder Traversal : 7, 1, 0, 3, 2, 5, 4, 6, 9, 8, 10

Inorder Traversal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Postorder Traversal: 0, 2, 4, 6, 5, 3, 1, 8, 10, 9, 7

CSE Department, MJCET 58

Data Structures Using C++ Lab Manual

Program 17

HASHING

Problem Definition

Write a C++ program to implement Hashing

Problem Description

Hash Table is a data structure which store data in a hash table. The insertion and search
operations are very fast irrespective of size of data. Hash Table is an array and a hash
function is used to determine at which index position each data record is to be stored.
Each data record has a unique key associated with it. Hashing is a technique to convert
a range of key values into a range of indexes of an array.

Hash(k)=index position where record with key “k” is stored in hash table

We’re going to use modulo operator to get a range of key values. Consider an example of
hashtable of size 20, and following items are to be stored. Item are in (key,value) format.

Example: hash table size=20. Hash function used is hash(key)=key%size=index
position

Data records to be inserted in (key,value) format :(1,20), (2,70), (42,80), (4,25), (12,44),
(14,32), (17,11), (13,78), (37,98)

CSE Department, MJCET 59

Data Structures Using C++ Lab Manual

It may happen that the hashing technique used may map a record key to already used
index of the array. This is called as collision. There are many collision resolution tech-
niques. The simplest one is linear probing. In linear probing, when a record key is
mapped to already filled array position, then we can search the next empty location in
the array linearly until we found an empty cell. This technique is called linear probing.

CSE Department, MJCET 60

Data Structures Using C++ Lab Manual

Basic Operations

Following are basic primary operations of a hashtable :

Insert Algorithm

1. Declare variables hash and home. Variable home is used to store index position
generated by hash function and variable hash is used to save a copy of home value.

2. Apply hash function to convert given “key” to index position i.e home=key

3. Assign hash = home, save the starting index position

4. Repeatedly search the hash table by doing following steps as long as empty cell is
not found and key is not found in hash table

a. Apply linear probing. That is go to next index position in hash table circularly.

b. If we reach back the index position from which we started i.e “hash”, then
display “Table is full. Cant insert”

5. If empty cell is found during linear probing, then

a. Save the key at that index position

CSE Department, MJCET 61

Data Structures Using C++ Lab Manual

Search Algorithm

1. Declare variables hash and home. Variable home is used to store index position
generated by hash function and variable hash is used to save a copy of home value.

2. Apply hash function to convert given “key” to index position i.e home=key

3. Assign hash = home, save the starting index position.

4. Repeatedly search the hash table by doing following steps as long as empty cell is
not found and key is not found in hash table.

a. Apply linear probing. That is go to next index position in hash table circularly.

b. If we reach back the index position from which we started i.e “hash”, then
return -1 to indicate “Not Found”.

5. If empty cell is found during linear probing, then

a. return -1 to indicate “Not Found”

6. Else,

a. Return index value “hash” where key is found

Pseudocode

constructor - creates dynamic memory for hashtable of size 10

Hashing()

table=new int[10]

for i=0 to 9

table[i]=0

destructor-deletes/frees memory used by hash table

~Hashing()

delete [] table

insert(key)

declare hash,home

home=key%10

hash=home

while table[hash]!=0 and table[hash]!=key

hash=(hash+1)%10

if hash == home

display "Table is full. Cant insert"

return

if table[hash] == 0

table[hash]=key

CSE Department, MJCET 62

Data Structures Using C++ Lab Manual

search(key)

declare hash,home

home=key%10

hash=home

while table[hash!=0 and table[hash]!=key

hash=(hash+1)%10

if hash is equal to home

return -1

if table[hash] is 0

return -1

else

return hash

Problem Validation

\noindent{\bf Input: }

Enter the key to be inserted: 12

Enter the key to be inserted: 21

Enter the key to be inserted: 34

Enter the key to be inserted: 56

Enter the key to be inserted: 78

Enter the key to be inserted: 92

(A) Enter the key to be searched:34

(B) Enter the key to be searched:92

(C) Enter the key to be searched:38

\noindent{\bf Output:}

(A) Found at position 4

(B) Found at position 3

(C) Not Found

CSE Department, MJCET 63

Data Structures Using C++ Lab Manual

Program 18

HEAP SORT

Problem Definition

Write a C++ program to implement Heap sort

Problem Description

Heap is a special tree-based data structure, that satisfies the following special heap prop-
erties :

1. Shape Property : Heap data structure is always a Complete Binary Tree, which
means all levels of the tree are fully filled.

 2. Heap Property : All nodes are either [greater than or equal to] or [less than or equal
to] each of its children. If the parent nodes are greater than their children, heap
is called a Max-Heap, and if the parent nodes are smalled than their child nodes,
heap is called Min-Heap.

CSE Department, MJCET 64

Data Structures Using C++ Lab Manual

Array Implementation A Heap can be represented by storing its level order traversal

in an array. The root is the second item in the array. We skip the index zero cell of the
array for the convenience of implementation. Consider i-th element of the array, the

its left child is located at 2*i index

its right child is located at 2*i+1.

index its parent is located at i/2 index

CSE Department, MJCET 65

Data Structures Using C++ Lab Manual

Heap Sort Algorithm

1. Store the given numbers in an array starting from position 0. This creates a com-
plete binary tree.

2. The complete binary tree is then converted to a minheap as follows:

a. For i=n/2 to 1 (n/2 is the index of first non-leaf node)

a. Heapify node i in a heap of size n

3. To sort the numbers in ascending order:

a. For i =n to 2

i. Swap root node a[1] with last leaf node a[i]

ii. Heapify root node 1 in heap of size i-1

(Root node is the smallest number. By putting it in last place and reducing the heap
size by 1, we are removing it from heap)

CSE Department, MJCET 66

Data Structures Using C++ Lab Manual

Heapify Algorithm: It converts the non heap to min-heap form again. It starts from

the given node position and creates a heap of given size.

1. Declare variables left,right,maxchild. They store the node positions of left,right and
max child of a node.

2. Initialize left=2i, right=2i+1

3. While left child exists in heap

a. If right child exists and eight child value is greater than left child value, then

i. Assign maxchild=right

b. Else

i. Assign maxchild=left

c. If parent is greated than maxchild,then (min heap condition is not satisfied)

i. Break out of the loop

4. Swap parent and maxchild node values- (to make it a min heap)

5. Move one level down the heap by assigning parent i=maxchild,
left=2i,right=2i+1

Pseudocode

heapsort(a[],n):array a and size n

for i=n/2 to 1

heapify(a,i,n)

for i=n to 2

swap a[1] and a[i]

heapify(a,1,i-1)

heapify(a[],i,size)

declare variables left,right,maxchild

left=2*i

right=2*i+1

while left <= size

if right <= size and a[right] > a[left]

maxchild=right

else

maxchild=left

if a[i] >= a[maxchild]

break

swap a[i] and a[maxchild]

i=maxchild

left=2*i

right=2*i+1

CSE Department, MJCET 67

Data Structures Using C++ Lab Manual

Problem Validation

\noindent{\bf Input: }

Enter the size:10

Enter the elements to be sorted using heapsort:

12 89 9 78 45 34 22 11 90 55

\noindent{\bf Output:}

Sorted elements are:

9 11 12 22 34 45 55 78 89 90

CSE Department, MJCET 68

Data Structures Using C++ Lab Manual

Program 19

GRAPH : DFS & BFS

Problem Definition

Write a C++ program to implement Graph Traversal Techniques – DFS and BFS

Problem Description

A graph is a collection of nodes called vertices, and the connections between them, called
edges. When the edges in a graph have a direction, the graph is called a directed graph
or digraph, and the edges are called directed edges or arcs. More formally, a graph is
an ordered pair, G = <V, E>, where V is the set of vertices, and E, the set of edges, is
itself a set of ordered pairs of vertices. For example, the following expressions describe
the graph shown below in set-theoretic language: V = {A, B, C, D, E}
E = {<A, B>, <A, D>, <B, C>, <C, B>, <D, A>, <D, C>, <D, E>}

To traverse means to visit the vertices in some systematic order. Two popular graph
traversal techniques: breadth first search (BFS) and depth first search (DFS) Graph is
stored using adjacency matrix a[][] and n is no. of vertices. The array visited is used to
keep track of which vertices are visited during graph traversals- BFS and DFS.

BFS Algorithm In a breadth first search, you start at the root node, and then scan

each node in the first level starting from the leftmost node, moving towards the right.
Then you continue scanning the second level (starting from the left) and the third level,
and so on until you’ve scanned all the nodes. BFS uses Queue data structure

CSE Department, MJCET 69

Data Structures Using C++ Lab Manual

Bfs(vertex v)

mark v as visited

display v as output

insert v into queue Q

while Q is nonempty

remove an element v from Q

for each unmarked neighbor w of v(i,e w is adjacent to v)

mark w as visited

display w as output

insert w into queue Q

BFS Example

DFS Algorithm In a depth first search, you start at the root, and follow one of the

branches of the tree as far as possible until either the node you are looking for is found or
you hit a leaf node (a node with no children). If you hit a leaf node, then you continue the
search at the nearest ancestor with unexplored children.DFS uses recursion, so indirectly
it uses stack data structure.

dfs(vertex v)

mark v as visited

display v as output

for each neighbor w of v

if w is unvisited

dfs(w)

CSE Department, MJCET 70

Data Structures Using C++ Lab Manual

DFS Example

Pseudocode

Constructor-creates memory to store graph adjacency matrix and

visited array

graph(x):x is no. of vertices

n=x

e=0

visited=new int[n+1]

a=new int *[n+1]

for i=1 to n

a[i]=new int [n+1]

for i=1 to n

for j=1 to n

a[i][j]=0

destructor-deletes/frees memory used to store graph and visited matrix

~graph()

delete []visited

for i=1 to n

delete a[i]

delete[]a

addedge(v,u):adding edge(v,u) to graph

a[v][u]=1

a[u][v]=1

e++

CSE Department, MJCET 71

Data Structures Using C++ Lab Manual

clearvisited():used to initialize visited array to zeroes

for i=1 to n

visited[i]=0

dfs(v)

visited[v]=1 display v

for i=1 to n

if a[v][i]==1 and visited[i]!=1

dfs(i)

bfs(v)

queue<int> q(50)

visited[v]=1 display v

q.push(v)

while q not empty

v=q.pop()

for w=1 to n

if a[v][w]==1 and visited[w]!=1

q.push(w)

visited[w]=1

display w

Problem Validation

\noindent{\bf Input:}

No. of vertices:7

Edges added: (a,b),(a,c),(b,d),(a,d),(a,e),(c,f),(c,g)

\noindent{\bf Output:}

BFS : a,b,c,d,e,f

DFS: a,b,d,e,c,f,g

CSE Department, MJCET 72

Data Structures Using C++ Lab Manual

Annexure – I

List of programs according to O.U. curriculum

Code: CS231 Data Structures using C++ LAB

Instruction 3 Periods per week

Duration of University Examination 3 Hours

University Examination 50 Marks

Sessional 25 Marks

1. Implementation of Stacks, Queues.

2. Infix to Postfix Conversion, evaluation of postfix expression.

3. Polynomial arithmetic using linked list.

4. Implementation of Binary Search and Hashing.

5. Implementation of Selection, Shell, Merge and Quick sorts.

6. Implementation of Tree Traversals on Binary Trees.

7. Implementation of Heap Sort.

8. Implementation of operations on AVL Trees.

9. Implementation of Traversal on Graphs.

10. Implementation of Splay Trees.

Suggested Reading:

1. Ellis Horowitz, Dinesh Mehta, S. Sahani. Fundamentals of Data Stuctures in C++,

Universities Press. 2007.

2. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms, Prentice
Hall of India 1996.

3. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Pearson Edu-
cation 2006.

CSE Department, MJCET 73

