MUFFAKHAM JAH COLLEGE OF ENGINEERING AND TECHNOLOGY

(Affiliated to Osmania University and Recognized by AICTE)

Mount Pleasant, 8-2-249, Road No. 3, Banjara Hills, Hyderabad, Telangana-500034.

INDEX

S.NO.	DATA SCIENCE LAB LIST OF PROGRAMS	CO	PAGE
1	Write R program for calculator application	CO2	3
2	Write R program for performing descriptive statistics	CO1	6
a)	Using Summary	CO1	
b)	Using subset()	CO1	
3	Write R program for reading and writing different types of data sets	CO2	12
a)	Reading different types of data sets(.txt,.csv) from web and disk and writing in specific disk location		
b)	Reading Excel data set in R		
4	Write R program for visualizations	CO2	17
5	Write R program to find Correlation and Covariance	CO2	22
6	Write R program for Regression Modeling	CO2	26
7	Write R program to build classification model using KNN algorithm	CO3	30
8	Write R program to build clustering model using K-mean algorithm	CO3	34
	BEYOND SYLLABUS PROGRAMS		
9	Write R program to read an XML file	CO2	38

Calculator Application

<u>**R** operators</u> – R has many operators to carry out different mathematical and logical operations. Operators in R can mainly be classified into the following categories.

- 1. Arithmetic operators +, -, x, /
- 2. Assignment operators <- , ->
- 3. Relational operators <, >, ==, !=, <=, >=
- 4. Logical operators !, &, &&, |, ||

We use the four fundamental arithmetic operations of mathematics for building a calculator application. Those functions are –

- 1. Addition
- 2. Subtraction
- 3. Multiplication
- 4. Division

<u>User-defined Functions in R_{-} </u> In R programming, user-defined functions are functions that are created by the user for a specific use that the already built-in functions of R don't provide.

Syntax - functionName <- function (arguments)

commands to perform

}

Parameters -

functionname: every function is generally given a name function(argument): here the variables are mentioned commands to perform: the block of code is written here.

1. Aim: To implement Calculator Application in R

a. Using with and without R objects on console

b. Using mathematical functions on console

c. Write an R script, to create an R object for calculator application and save in a specified location in disk.

Program:

1+2	
3-1	
4*2	
5*2	
a<-1	
b<-4	
c<-2	
a+b	
a-b	
a*b	
b/c	
add<-function(x,y)	
{	
print(x+y)	
}	
add(2,3)	
subt<-function(x,y)	
{	
print(x-y)	
}	
subt(7,2)	
mul<-function(x,y)	
{	
print(x*y)	
}	
mul(6,3)	
div<-function(x,y)	
{	
print(x/y);	
}	
div(10,2)	
choice=readline(prompt="Enter add for addition	
subt for subtraction	
mul for multiplication	
alv for division	
Choice: ");	
num1=readline(prompt = "Enter first number : ");	

```
num2=readline(prompt = "Enter second number : ");
num1=as.integer(num1)
num2=as.integer(num2)
cal<-switch(choice,"add"=print(num1+num2),
"subt"=print(num1-num2),
"mul"=print(num1*num2),
"div"=print(num1/num2))
```

Output -

>

```
> 7+6
[1] 13
> 32-30
[1] 2
> 4*2
[1] 8
> 5*22
 [1] 110
> a<-1
> b<-2
> c<-2
> a+b
[1] 3
[1] 3
> a-b
[1] -1
> a*b
[1] 2
> b/c
 > b,
[1]
      1
add = function(x, y) {
return(x + y)
> subtract = function(x, y) {
+ return(x - y)
+ }
> multiply = function(x, y) {
+ return(x * y)
+ }
> divide = function(x, y) {
   }
divide = function(x, y) {
   return(x / y)
+
+ }
>
> print("Select operation.")
[1] "Select operation.
> print("1.Add")
[1] "1.Add"
> print("2.Subtract")
[1] "2.Subtract"
> print("3.Multiply")
[1] "3.Multiply"
> print("4.Divide")
[1] "4.Divide"
> choice = as.integer(readline(prompt="Enter choice[1/2/3/4]: "))
Enter choice[1/2/3/4]: 3
> num1 = as.integer(readline(prompt="Enter first number: "))
Enter first number: 5
> num2 = as.integer(readline(prompt="Enter second number: "))
Enter second number: 8
> operator <- switch(choice,"+","-","*","/")
> result <- switch(choice, add(num1, num2), subtract(num1, num2), multiply(num1, num2), divide(num1,
num2))
> print(paste(num1, operator, num2, "=", result))
[1] "5 * 8 = 40"
```

Descriptive Analysis

Dataset - mtcars

<u>Description –</u> The **mtcars** dataset is a built-in dataset in R that contains measurements on 11 aspects of automobile design and performance for 32 cars. The data was extracted from the 1974 *Motor Trend* US magazine.

Attributes -

- 1. Cyl
- 2. Disp
- 3. Hp
- 4. Drat
- 5. Wt
- 6. Qsec
- 7. Vs
- 8. Am
- 9. Gear
- 10. Carb

Dataset – cars <u>Description –</u> This dataset contains 50 observations of 2 variables. It shows various readings on "speed" and "distance" collected.

Attributes -

- 1. speed
- 2. distance

Dataset – iris

<u>Description</u> — The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.

Attributes -

1.	sepal	length	in	cm
2.	sepal	width	in	cm
3.	petal	length	in	cm
4.	petal	width	in	cm
5.	-			species:
		Iris		Setosa
		Iris		Versicolour
T ' T/'				

-- Iris Virginica

Subset function –

subset() function in R programming is used to create a subset of vectors, matrices, or data frames.

Syntax - subset(x,subset,select)

Parameters -

- *x*: indicates the object
- *subset:* indicates the logical expression on the basis of which subsetting has to be done
- select: indicates columns to select

Aggregate function –

Aggregate functions are often used to derive descriptive statistics.

<u>Syntax –</u> aggregate(x, by, FUN, ..., simplify=TRUE, drop=TRUE)

Parameters -

- x: R object
- by: List of variables
- FUN: Function to be applied for summary statistics
- ... : Additional arguments to be passed to FUN
- Simplify: Whether to simplify results as much as possible or not
- Drop: Whether to drop unused combinations of grouping values or not

mean() function – This will simply calculate the total mean of all the observations present in the data of that particular mentioned attribute.

min() function - This will give us the least valued observation from the data being used.

max() function - This will give us the maximum valued observation from the data being used.

summary() function – The summary of all the attributes are shown separately. The factors used in doing so are minimum value, 1^{st} quartile, Median, Mean, 3^{rd} Quartile, Maximum value.

2. Aim: To perform Descriptive Statistics in R

a. To write an R script to find basic descriptive statistics using summary, str, quartile function on metacars

- b. To apply the above functions on cars data sets
- b. To apply subset(), aggregate() functions on iris dataset.

Datasets used:

- 1. mtcars
- 2. cars
- 3. iris

Program:

a. Descriptive Statistics Analysis on mtcars dataset

> mtcars[c(1,4)]				
Mazda RX4 Mazda RX4 W Datsun 710 Hornet 4 Dr Hornet 5por Valiant Duster 360 Merc 240D Merc 280 Merc 450SL Merc 450SL Cadillac Fl Lincoln Con Chrysler Im Fiat 128 Honda Civic Toyota Coro Toyota Coro Dodge Chall AMC Javelin Camaro 228 Pontiac Fir Fiat X1-9 Porsche 914 > mtars[-2]	ag ive tabout tinental perial lla enger ebird -2	mpg np 21.0 110 21.4 110 22.8 93 21.4 110 18.7 175 18.1 105 14.3 245 22.8 95 19.2 123 17.8 123 16.4 180 15.2 180 15.2 180 10.4 215 14.7 230 32.4 66 30.4 52 33.9 65 21.5 97 15.5 150 15.2 150 15.2 150 15.2 150 15.2 150 15.2 150 15.2 150 15.2 150 15.2 150 15.2 150 15.2 26.0			
> mtcars[-2]	mpg disp hp	drat wt qsec v	s am gear carb		
Mazda RX4 Mazda RX4 Wag	21.0 160.0 110	3.90 2.620 16.46	0 1 4 4		
Mazda RX4 wag Datsun 710	22.8 108.0 93	3.85 2.320 18.61			
Hornet 4 Drive	21.4 258.0 110	3.08 3.215 19.44	1031		
Hornet Sportabout Valiant	18.7 360.0 175	3.15 3.440 17.02	0 0 3 2		
Duster 360	14.3 360.0 245	3.21 3.570 15.84	0 0 3 4		
Merc 240D	24.4 146.7 62	3.69 3.190 20.00	1 0 4 2		
Merc 230 Merc 280	22.8 140.8 95	3.92 3.150 22.90			
Merc 280C	17.8 167.6 123	3.92 3.440 18.90	1 0 4 4		
Merc 450SE	16.4 275.8 180	3.07 4.070 17.40	0 0 3 3		
Merc 450SL	17.3 275.8 180	3.07 3.730 17.60	0 0 3 3		
Cadillac Fleetwood	10.4 472.0 205	2.93 5.250 17.98	0 0 3 4		
Lincoln Continental	10.4 460.0 215	3.00 5.424 17.82	0 0 3 4		
Chrysler Imperial	14.7 440.0 230	3.23 5.345 17.42	0 0 3 4		
Honda Civic	30.4 75.7 52	4.93 1.615 18.52	1 1 4 2		
Toyota Corolla	33.9 71.1 65	4.22 1.835 19.90	1 1 4 1		
Toyota Corona	21.5 120.1 97	3.70 2.465 20.01			
AMC Javelin	15.2 304.0 150	3.15 3.435 17.30	0 0 3 2		
Camaro Z28	13.3 350.0 245	3.73 3.840 15.41	0 0 3 4		
Pontiac Firebird	19.2 400.0 175	3.08 3.845 17.05	0 0 3 2		
Fiat XI-9 Porsche 914-2	27.3 79.0 66	4.08 1.935 18.90			
> max(mtcars\$cy]		1.15 2.110 10.70			
[1] 8					
> min(mtcars\$mpg)					
> mean(mtcars\$mp	g)				
[1] 20.09062					
> median(mtcars\$)	ngp)				
> summary(mtcars))				
mpg	cyl	disp	hp Min 1520	drat	
Min. :10.40 1st Ou.:15.43	1st Ou.:4.00	0 Min. : /1.1 0 1st Ou.:120.8	1st Ou.: 96.5	1st Ou.:3.080	
Median :19.20	Median :6.00	0 Median :196.3	Median :123.0	Median :3.695	
Mean :20.09	Mean :6.18	8 Mean :230.7	Mean :146.7	Mean :3.597	
Max. :33.90	Max. :8.00	0 Max. :472.0	Max. :335.0	Max. :4.930	
. wt	qsec	VS	am	gear	
Min. :1.513	Min. :14.5	0 Min. :0.000	00 Min. :0.0000	Min. :3.000	
Median :3.325	Median :17.7	1 Median :0.000	0 Median :0.0000	Median :4.000	
Mean :3.217	Mean :17.8	5 Mean :0.437	5 Mean :0.4062	Mean :3.688	
3rd Qu.:3.610	3rd Qu.:18.9	0 3rd Qu.:1.000	00 3rd Qu.:1.0000	3rd Qu.:4.000	
carb	Max. :22.9	Max. :1.000	Max. :1.0000	Max. :5.000	
Min. :1.000					
Ist Qu.:2.000 Median :2.000					
Mean :2.812					
3rd Qu.:4.000					
Max. :8.000					

b. Descriptive Statistics Analysis on cars dataset

```
data(cars)
head(cars,10)
tail(cars,20)
str(cars)
head(cars)
max(cars)
max(cars$speed)
min(cars$speed)
median(cars$speed)
mode(cars$speed)
summary(cars$speed)
summary(cars)
```

Output:

> data(cars) > head(cars, 10)	42 20 56
speed dist	43 20 64
1 4 2 2 4 10	45 23 54
3 7 4	46 24 70
4 7 22 5 8 16	47 24 92
6 9 10	48 24 93
7 10 18 8 10 26	50 25 85
9 10 34	> str(cars)
> tail(cars, 20)	'data.frame': 50 obs. of 2 variables:
speed dist	\$ speed: num 4 4 7 7 8 9 10 10 10 11
31 17 50 32 18 42	> head(cars)
33 18 56	speed dist
35 18 84	1 4 2
36 19 36	2 4 10
38 19 68	3 / 4 4 7 22
39 20 32	5 8 16
41 20 52	6 9 10
42 20 56	> max(cars)
44 22 66	[1] 120
45 23 54 46 24 70	[1] 25
> min(cars\$speed)	—
[1] 4	
> mean(carssspeed)	
[1] 15.4	
<pre>> median(cars\$speed)</pre>	
[1] 15	
> mode(cars\$speed)	
[1] "numeric"	
[1] Humeric	
> summary(carssspeed)	
Min. 1st Qu. Media	in Mean 3rd Qu. Max.
4.0 12.0 15.	0 15.4 19.0 25.0
> summary(cars)	
speed o	list
Min · 4 0 Min	· 2 00
1st ou :12 0 1st ou	1 : 26 00
13C Qu12.0 13C Qu	20.00
Median :15.0 Median	1 : 30.00
Mean :15.4 Mean	: 42.98
3rd Qu.:19.0 3rd Qu	1.: 56.00
Max. :25.0 Max	:120.00

c. Applying subset and aggregate functions on iris dataset

data(iris) head(iris) tail(iris) subset(iris,Sepal.Length==6.1) aggregate(.~Species,data=iris,mean)

Output –

<pre>> data(iris)</pre>					
<pre>> head(iris)</pre>					
Sepal.Lengt	ch Sepal.Widt	h Petal.Lengt	h Petal.Widt	h Speci	es
1 5.	.1 3.	5 1.	4 0.	2 seto	sa
2 4.	.9 3.	0 1.	4 0.	2 seto	sa
3 4.	7 3.	2 1.	3 0.	2 seto	sa
4 4.	.6 3.	1 1.	5 0.	2 seto	sa
5 5.	0 3.	6 1.	4 0.	2 seto	sa
6 5.	4 3.	9 1.	7 0.	4 seto	sa
<pre>> tail(iris)</pre>					
Sepal.Ler	ngth Sepal.Wi	dth Petal.Len	gth Petal.Wi	dth S	pecies
145	6.7	3.3	5.7	2.5 vir	ginica
146	6.7	3.0	5.2	2.3 vir	ginica
147	6.3	2.5	5.0	1.9 vir	ginica
148	6.5	3.0	5.2	2.0 vir	ginica
149	6.2	3.4	5.4	2.3 vir	ginica
150	5.9	3.0	5.1	1.8 vir	ginica
> subset(iris	. Sepal.Lend	th == 6.1)			9eu
Sepal. Ler	oth Sepal.Wi	dth Petal.Len	oth Petal.Wi	dth	Species
64	6.1	2.9	4.7	1.4 ver	sicolor
72	6.1	2.8	4.0	1.3 ver	sicolor
74	6 1	2.8	4 7	1 2 ver	sicolor
92	6.1	3.0	4.6	1.4 ver	sicolor
128	6 1	3.0	4.9	1.8 vi	rainica
135	6 1	2.6	5.6	1.4 vi	rginica
> addredate(~Species da	ta-iris mean)	1.4 1	rginica
Species	Senal Length	Senal width	Petal Length	Potal 1	width
1 setosa	5 OOG	2 / 28	1 462	recar.	0 246
2 versicolor	5.000	2 770	4 260		1 326
2 versicolor	6 588	2.770	5 5 5 5		2 026
5 virginica	0.500	2.5/4	5.552		2.020

Reading and writing different types of data

Package used - readxl

The readxl package makes it easy to get data out of Excel and into R. Compared to many of the existing packages, readxl has no external dependencies, so it's easy to install and use on all operating systems. It is designed to work with tabular data.

Functions for Reading Data into R -

There are a few very useful functions for reading data into R.

- 1. **read.table**() and **read.csv**() are two popular functions used for reading tabular data into R.
- 2. **readLines()** is used for reading lines from a text file.
- 3. **source**() is a very useful function for reading in R code files from a another R program.
- 4. **dget**() function is also used for reading in R code files.
- 5. load() function is used for reading in saved workspaces
- 6. unserialize() function is used for reading single R objects in binary format.

Functions for Writing Data to Files –

There are similar functions for writing data to files.

- 1. write.table() is used for writing tabular data to text files (i.e. CSV).
- 2. read.delim() is used to read delimited text files in the R Language.
- 3. **writeLines**() function is useful for writing character data line-by-line to a file or connection.
- 4. **dump()** is a function for dumping a textual representation of multiple R objects.
- 5. **dput()** function is used for outputting a textual representation of an R object.
- 6. **serialize**() is used for converting an R object into a binary format for outputting to a connection .

- 3. Aim: To read and write different types of datasets
- a. To read different types of datasets from web and disk and writing in file in specific disk location.
- b. To read Excel data sheet in R.

name=c("a","b","c","d","e") marks=c(20,30,40,10,15) id=c(1:5) st=data.frame(id,name,marks) View(st)

#1. writing data frame into CSV file
write.csv(student,"student.csv",row.names=FALSE)

#2. reading CSV file
st1=read.csv("student.csv")
View(st1)

#3.writing data frame to a text file write.table(st1,file="st1.txt",quote=F,row.names=F)

#4. reading from text
st2=read.delim('st1.txt')
View(st2)

#5. reading a file from web
webfile = read.delim("http://www.sthda.com/upload/boxplot_format.txt")
print(webfile)
head(webfile)
write.table(webfile,file="webfile.txt",quote=F,row.names=FALSE)

install package readxl first

install.packages("readxl") library(readxl)

#6. reading excel datasheet
df=read_excel("d:/ex1.xlsx",sheet=2)
View(df)

Output:

- > name=c("a","b","c","d","e")
- > marks=c(20,30,40,10,15)
- > id = c(1:5)
- > st=data.frame(id,name,marks)
- > View(st)
- > #1. writing data frame into CSV file
- > write.csv(student,"student.csv",row.names=FALSE)

*	id [‡]	name 🚊	marks 🚊
1	1	a	20
2	2	b	30
3	3	c	40
4	4	d	10
5	5	e	15

- > #2. reading CSV file
- > st1=read.csv("student.csv")
- > View(st1)

^	id [‡]	name 🍦	marks $^{\diamond}$
1	1	a	20
2	2	b	30
3	3	c	40
4	4	d	10
5	5	e	15

- > #3.writing data frame to a text file
- > write.table(st1,file="st1.txt",quote=F,row.names=F)
- >

- > #4. reading from text
- > st2=read.delim('st1.txt')
- > View(st2)

*	id.name.marks
1	1 a 20
2	2 b 30
3	3 c 40
4	4 d 10
5	5 e 15

#5. reading a file from web

> webfile = read.delim("http://www.sthda.com/upload/boxplot_format.txt")

> print(webfile)

Nom	varia	ble	Group
1 IND1	10	А	•
2 IND2	7	Α	
3 IND3	20	A	
4 IND4	14	A	
5 IND5	14	A	
6 IND6	12	A	
7 IND7	10	Δ	
8 IND8	23	Δ	
9 IND9	17	Δ	
10 IND10	20	Δ	
11 IND11	14	Δ	
12 IND12	13	Δ	
13 IND13	11	B	
13 IND13 14 IND14	17	B	
15 IND15	21	B	
16 IND16	11	B	
17 IND17	16	B	
18 IND18	14	R	
19 IND19	17	R	
20 IND20	17	R	
21 IND21	10	R	
21 IND21 22 IND22	21	B	
22 IND22 23 IND23	7	B	
23 IND23 24 IND24	13	B	
24 IND24 25 IND25	0	Ċ	
25 IND25	1	C	
20 IND20 27 IND27	7	C	
27 IND27 28 IND28	2	C	
20 IND20	3	c	
30 IND30	1	C	
31 IND31	2	C	
32 IND32	1	C	
33 IND33	3	C	
34 IND34	0	C	
35 IND35	1	C	
36 IND36	4	C	
37 IND37	3	D	
38 IND38	5	D	
39 IND39	12	D	
40 IND40	6	D	
41 IND41	4	D	
42 IND42	3	D	
43 IND43	5	D	
44 IND44	5	D	
45 IND45	5	D	
46 IND46	5	D	
47 IND47	2	D	
48 IND48	4	D	
49 IND49	3	Ē	
50 IND50	5	Ē	
51 IND51	3	Ē	
52 IND52	5	Ē	
53 IND53	3	Ē	
54 IND54	6	Ē	
55 IND55	1	Ē	
56 IND56	1	Ē	
57 IND57	3	E	

58 IND58 2 Е 59 IND59 6 Е 60 IND60 Е 4 61 IND61 11 F 62 IND62 9 F 63 IND63 15 F F 64 IND64 22 65 IND65 F 15 66 IND66 16 F 67 IND67 13 F 68 IND68 10 F 69 IND69 F 26 F 70 IND70 26 71 IND71 24 F 72 IND72 13 F > head(webfile) Nom variable Group 1 IND1 10 А 7 2 IND2 Α 3 IND3 20 А 4 IND4 14 Α 5 IND5 14 Α 6 IND6 12 А > write.table(webfile,file="webfile.txt",quote=F,row.names=FALSE) > > # install package readxl first > > install.packages("readxl") Error in install.packages : Updating loaded packages > library(readxl) >> #6. reading excel datasheet > df=read_excel("d:/ex1.xlsx",sheet=2) > View(df) ٠ ÷ rollno marks 1 1 11 2 2 22 3 3 33

4

4

Experiment – 4 Visualization

Data visualization is an efficient technique for gaining insight about data through a visual medium. With the help of visualization techniques, we can easily obtain information about hidden patterns in data and also we can work with large datasets to efficiently obtain key insights.

Dataset used - mtcars

<u>Description –</u> The **mtcars** dataset is a built-in dataset in R that contains measurements on 11 aspects of automobile design and performance for 32 cars. The data was extracted from the 1974 *Motor Trend* US magazine.

<u>Attributes –</u>

- 1. Cyl
- 2. Disp
- 3. Hp
- 4. Drat
- 5. Wt
- 6. Qsec
- 7. Vs
- 8. Am
- 9. Gear
- 10. Carb

Package - ggplot2

R allows us to create graphics declaratively. This package is famous for its elegant and qualitygraphs, which sets it apart from other visualization packages.

Boxplot – boxplot() function is used to create a boxplot. These are a measure of how well data is distributed across a data set. This graph represents the minimum, maximum, average, first quartile, and the third quartile in the data set.

<u>Syntax</u> – boxplot(x, data, names, main)

parameters -

- **x** is a vector or a formula.
- data is the data frame.
- **names** are the group labels which will be printed under each boxplot.
- **main** is used to give a title to the graph.

<u>Scatterplot –</u>

The scatter plots are used to compare variables. A comparison between variables is requiredwhen we need to define how much one variable is affected by another variable.

<u>Syntax – plot(x, y, main, xlab, ylab)</u>

Parameters -

• **x** is the data set whose values are the horizontal coordinates.

- y is the data set whose values are the vertical coordinates.
- **main** is the tile of the graph.
- **xlab** is the label in the horizontal axis.
- **ylab** is the label in the vertical axis.

Outliers using plots -

An outlier is a point or set of points that are different from other points. Sometimes they can be very high or very low. It's often a good idea to detect and remove the outliers. Because outliers are one of the primary reasons for resulting in a less accurate model. Often outliers can be seen with visualizations using a box plot.

<u>R Histogram</u>

A histogram is a type of bar chart which shows the frequency of the number of values which are compared with a set of values ranges. For creating a histogram, R provides hist() function. The histogram is used for the distribution.

<u>Syntax - hist(v,main,xlab,col)</u>

Parameters –

- **v** is a vector containing numeric values used in histogram.
- **main** indicates title of the chart.
- **xlab** is used to give description of x-axis.
- **col** is used to set color of the bars.

<u>R Bar Charts</u>

A bar chart is a pictorial representation in which numerical values of variables are represented by length or height of lines or rectangles of equal width. R provides the barplot() function.

Syntax - barplot(H, xlab, ylab, main, names.arg, col)

Parameters -

- H is a vector or matrix containing numeric values used in bar chart.
- **xlab** is the label for x axis.
- ylab is the label for y axis.
- main is the title of the bar chart.
- **names.arg** is a vector of names appearing under each bar.
- **col** is used to give colours to the bars in the graph.

R Pie Charts

A pie-chart is are presentation of values in the form of slices of a circle with different colors. Pie charts are created with the help of pie () function, which takes positive numbers as vector input.

<u>Syntax - pie(x, labels, main, col)</u>

Parameters –

- **x** is a vector containing the numeric values used in the pie chart.
- **labels** is used to give description to the slices.
- **main** indicates the title of the chart.
- **col** indicates the colour palette.

- 4. Aim: To perform visualizations
- a. To find the data distribution using box and scatter plot
- b. To find the outliers using plot.
- c. To plot the histogram, bar chart and pie chart on sample data.

Dataset used: mtcars

Program: #Linear plot x=1:10	
y=x^2	
plot(x,y,type="l",main="Linear Plot Example")	
#installing package	
install.packages("ggplot2")	
#scatter plot	
data("mtcars")	
plot(
mtcars\$wt,mtcars\$mpg,	
main = "scatter plot example",	
xlab = "car weight",	_
ylab="miles per gallon",	
#box plot	
data("mtcars")	
boxplot(
mtcars\$mpg,	
main = "box plot example",	
ylab="miles per gallon"	
)	
#outliers	
v<-c(50,25,30,12,78,99)	
boxplot(v,main="outliers")	
#Histogram	
H<-c(9,13,28,36,4,54,99,98)	
hist(H,main="Histogram",col="blue")	
#Barchart	
h<-c(9,13,28,36,4,54)	
m<-c("MAR","APR","MAY","JUN","JUL","AUG")	
barplot(h,names.arg=m,xlab="Month",ylab="revenue",main="b	archart",border ="blue")
#pie chart	
h<-c(90,78,80,25)	
m<-c("OS","DBMS","Java","OE")	
pie(h,m,main = "piechart")	

Output:

Correlation and Covariance

Correlation and Covariance are terms used in statistics to measure relationships between two random variables. Both of these terms measure linear dependency between a pair ofrandom variables or bivariate data.

<u>Correlation in R Programming Language –</u>

cor() function in R programming measures the correlation coefficient value. Correlationis a relationship term in statistics that uses the covariance method to measure how strong the vectors are related. Mathematically,

$$\operatorname{Corr}(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

where,

 \boldsymbol{x} represents the \boldsymbol{x} data vector

y represents the y data vector

Syntax: cor(x, y, method)

where,

- *x* and *y* represents the data vectors
- *method* defines the type of method to be used to compute covariance.

Covariance in R Programming Language -

In R programming, covariance can be measured using **cov()** function. Covariance is a statistical term used to measures the direction of the linear relationship between the data vectors. Mathematically,

$$\operatorname{Cov}(x, y) = \frac{\Sigma(x_i - \bar{x})(y_i - \bar{y})}{N}$$

Syntax: cov(x, y, method) where,

- *x* and *y* represents the data vectors
- *method* defines the type of method to be used to compute covariance.
- N represents total observations

Package - CORRPLOT()

R package **corrplot** provides a visual exploratory tool on correlation matrix that supports automatic variable reordering to help detect hidden patterns among variables.

corrplot is very easy to use and provides a rich array of plotting options invisualization method, graphic layout, color, legend, text labels, etc. It also provides p-values and confidence intervals to help users determine the statistical significance of the correlations.

corrplot() - The mostly using parameters include method, type, order, diag, and etc.

Correlation matrix –

A correlation matrix is a table of correlation coefficients for a set of variables used to determine if a relationship exists between the variables. The coefficient indicates both the strength of the relationship as well as the direction.

Syntax: cor (x, use = , method =) Parameters:

- *x*: It is a numeric matrix or a data frame.
- *use: Deals with missing data.*
- method: Deals with a type of relationship

Dataset - iris

Description –

The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.

<u>Attributes -</u>				
1.	sepal	length	in	cm
2.	sepal	width	in	cm
3.	petal	length	in	cm
4.	petal	width	in	cm
5.				species:
		Iris		Setosa
		Iris		Versicolour
Iris Virgini	ica			

Variance (ANOVA) -

Analysis of variance (ANOVA) is an analysis tool used in statistics that splits an observed aggregate variability found inside a data set into two parts: systematic factors and random factors. The systematic factors have a statistical influence on the given data set, while the random factors do not.

- 5. Aim: To Calculate Correlation and Covariance
- a. To find the correlation matrix.
- b. To plot the correlation plot on the dataset and visualize giving an overview of relationships among data on iris data.
- c. To analysis of covariance: variance (ANOVA), if data have categorical variables on iris data.

```
Dataset used: iris
Program:
install.packages('corrplot')
x < -rnorm(2)
Х
y<-rnorm(2)
у
mat < -cbind(x,y)
mat
cor(mat)
cov(mat)
data(iris)
iris
mydata<-iris[,c(1,2,3,4)]
mydata
str(mydata)
d1<-cor(mydata)
d1
library(corrplot)
corrplot(d1,method="circle")
color<-c('red','green','blue','black')
pairs(mydata,col=color,bg=color,pch=21)
cov(iris$Petal.Length,iris$Petal.Width
Output:
   #install.packages('corrplot')
x<-rnorm(2)</pre>
 [1] 0.6471771 1.4214339
> y<-rnorm(2)</pre>
> y
[1] 0.61047662 0.06848282
> mat<-cbind(x,y)</pre>
 x y
[1,] 0.6471771 0.61047662
[2,] 1.4214339 0.06848282
   cor(mat)
x y
1 -1
-1 1
   cov(mat)
   x y
0.2997368 -0.2098212
-0.2098212 0.1468786
   data(iris)
   iris
     Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                                  Species
                                                         0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.3
                             3.5
3.0
3.2
                                            1.4
1.4
1.3
                                                                   setosa
setosa
setosa
               5.1
4.9
4.7
                             3.1
3.6
3.9
3.4
               4.6
5.0
5.4
4.6
                                            1.5
1.4
1.7
1.4
 45
                                                                   setosa
setosa
67
                                                                   setosa
setosa
```


Regression Model

Dataset-crashdata.csv

<u>Description –</u> This dataset has 80 observations of 6 variables.

Attributes -

- 1. ManHI
- 2. ManBI
- 3. IntI
- 4. HVACi
- 5. Safety
- 6. CarType

Dataset – crashdataset.csv <u>Description –</u> This dataset has 20 observations of 6 variables.

Attributes -

- 1. ManHI
- 2. ManBI
- 3. IntI
- 4. HVACi
- 5. Safety
- 6. CarType

 \underline{GLM} – 'glm' is used to fit generalised linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution.

Syntax - glm (formula, family, data)

Parameters -

- Family types includes binomial, Poisson, Gaussian, gamma, quasi.
- Data: refers to the dataset being used

Package used – caret

Caret stands for classification and regression training and is arguably the biggest project in R.

One of the most powerful and popular packages is the caret library, which follows a consistent syntax for data preparation, model building, and model evaluation, making it easy for data science practitioners.

- 6. Aim: To evaluate the performance of Regression Model
- a. Import data from web storage. Name the dataset and perform Logistic
- b. Regression to find out relation between variables in the model. Also
- c. check the model is fit or not [require (foreign), require(MASS)]

Datasets used are

crashdata.csv crashdataset.csv

Program:

```
#logistic regression
mydata <- read.csv('crashdata.csv')
mytestdata <- read.csv('crashtestdata.csv')</pre>
mydata
mytestdata
str(mydata)
summary(mydata)
mydata[6] <- as.factor(mydata$CarType)</pre>
mydata
fit <- glm(formula=mydata$CarType~.,family='binomial', data=mydata)
fit
summary(fit)
train <- predict(fit, type='response')</pre>
plot(train)
tapply(train, mydata$CarType, mean)
pred <- predict(fit,newdata = mytestdata, type='response')
plot(pred)
mytestdata[pred<=0.5,'Predict'] <- 'Hatchback'
mytestdata[pred>0.5, 'Predict'] <- 'SUV'
mytestdata
#install.packages("caret") run on console
library(caret)
confusionMatrix(table(mytestdata[,7],mytestdata[,6]),positive='Hatchback')
```

Output:

>	#logist	tic reg	gressio	on			
>	mydata	<- rea	ad.csv	('crasl	ndata.cs	sv')	
>	mytest	data <-	- read	.csv('	crashtes	stdata.csv')	
>	mydata						
	ManHI	ManBI	IntI	HVACi	Safety	CarType	
1	-5.27	-1.30	2.86	-4.85	4.04	SUV	
2	-4.82	-5.38	9.72	-0.97	-4.57	Hatchback	
3	9.57	-7.50	-7.61	1.33	-5.10	Hatchback	
4	2.84	-2.85	0.92	5.51	-6.64	Hatchback	
5	0.00	2.68	-4.15	0.85	5.58	SUV	
6	0.40	6.34	0.83	5.03	-8.10	SUV	
7	5.94	3.14	-6.65	6.62	-1.32	Hatchback	
8	5.78	-1.75	-6.85	0.73	5.50	Hatchback	
9	0.86	-4.32	8.10	-8.96	3.10	Hatchback	
10	7.36	7.42	0.27	-8.62	3.08	SUV	
11	7.95	-6.44	-4.68	3.86	9.82	Hatchback	
12	-1.75	-8.09	-6.06	-9.13	-6.45	SUV	
13	9.44	-0.02	-9.38	0.06	6.06	SUV	
14	-9.67	9.61	7.85	5.88	-8.14	Hatchback	
15	6.81	3.66	4.75	0.89	-2.41	Hatchback	
16	-9.93	-6.15	5.77	8.76	3.60	Hatchback	
17	3 16	-6 80	-2 94	1 83	8 36	Hatchback	

```
> mytestdata
   ManHI ManBI IntI HVACi Safety CarType
1 1.94 2.21 3.38 1.78 -7.19 Hatchback
2 -0.02 -3.33 0.79 -6.63 7.99
                                            SUV
3 -0.49 -4.48 5.00 8.33 -2.77 Hatchback
  5.76 1.35 7.92 -0.43 4.29 Hatchback
4
5
  2.51 -8.74 4.53 -1.91
                                3.95 Hatchback
6 -4.47 8.42 -0.05 5.57 9.62 Hatchback
   -9.89 -2.25 -5.00 -9.23
                              9.38
                                            SUV
  -9.94 -3.23 2.81 -2.98 -1.12
                                            SUV
8
9 -8.37 4.21 -8.95 6.66
                              7.34
                                            SIIV
10 8.48 0.38 -3.02 -1.92 -7.43
                                            SUV
11 0.79 0.96 -4.03 -2.28 6.20
                                             SUV
12 5.32 2.08 5.55 7.89 -6.80 Hatchback
13 -7.26 -0.11 -5.27 -7.14 1.20
                                            SUV
14 0.69 3.37 3.70 -5.73 -5.86
                                             SIIV
15 -5.53 -0.12 1.61 2.31 -8.66
                                            SUV
16 8.29 1.44 -7.26 5.06 -7.00
                                            SUV
17 9.09 -2.26 1.64 2.80 -1.22 Hatchback
18 5.04 4.52 0.28 8.26 4.59 Hatchback
19 4.55 -3.88 -2.02 -1.20 -0.42 Hatchback
20 -5.55 6.02 8.87 5.26 -2.27 Hatchback
> str(mydata)
 'data.frame': 80 obs. of 6 variables:
 $ ManHI : num -5.27 -4.82 9.57 2.84 0 0.4 5.94 5.78 0.86 7.36 ...
 $ ManBI : num -1.3 -5.38 -7.5 -2.85 2.68 6.34 3.14 -1.75 -4.32 7.42 ...
 $ IntI : num 2.86 9.72 -7.61 0.92 -4.15 0.83 -6.65 -6.85 8.1 0.27 ...

$ HVACi : num -4.85 -0.97 1.33 5.51 0.85 5.03 6.62 0.73 -8.96 -8.62 ...
 $ safety : num 4.04 -4.57 -5.1 -6.64 5.58 -8.1 -1.32 5.5 3.1 3.08 ...
$ CarType: chr "SUV" "Hatchback" "Hatchback" "Hatchback" ...
> fit
call: glm(formula = mydata$CarType ~ ., family = "binomial", data = mydata)
Coefficients:
(Intercept)
-22.76
                     ManHI
                                    ManBI
                                                     IntI
                                                                   HVACi
                                                                                 Safetv
                                     36.02
                                                  -44.90
                                                                  -58.50
                                                                                 -27.36
                    -13.48
Degrees of Freedom: 79 Total (i.e. Null); 74 Residual
Null Deviance: 105.9
Null Deviance: 105.9
Residual Deviance: 5.359e-08
                                    AIC: 12
> summary(fit)
call:
glm(formula = mydata$CarType ~ ., family = "binomial", data = mydata)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.316e-04 -2.100e-08 -2.100e-08 2.100e-08 1.266e-04
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -22.76 12007.54 -0.002 0.998
ManHI -13.48 3077.29 -0.004 0.997
                 36.02
                            7221.18
8853.08
                                     0.005
                                                 0.996
ManBI
IntI
HVACi
               -58.50
-27.36
                                     -0.005
                         11461.92
                                                  0.996
                            5396.42
                                     -0.005
                                                  0.996
Safety
> summary(mydata)
    ManHI
                          ManBI
                                                 IntI
                                                                      HVACi
                      Min. :-9.9400 Min. :-9.9900
1st Qu.:-5.7050 1st Qu.:-5.5725
 Min. :-9.9300
1st Qu.:-5.1950
                                                                Min. :-9.8200
1st Ou.:-5.6750
 Median : 0.6350
                       Median :-1.8150
                                            Median :-0.4150
                                                                 Median : 0.8700
        :-0.0935
 Mean
                       Mean
                              :-0.9277
                                            Mean
                                                   :-0.1349
                                                                 Mean : 0.1197
 3rd Qu.: 5.0500
Max. : 9.5700
Safety
                       3rd Qu.: 3.4175
                                            3rd Qu.: 4.9775
                                                                 3rd Qu.: 5.0625
                      Max. : 9.6100
CarType
                                           Max. : 9.7200
                                                                Max. : 9.8900
 Min. :-9.8000
                       Length:80
 1st Qu.:-4.6775
                      Class :character
 Median : 0.8300
                      Mode :character
 Mean : 0.5437
 3rd Qu.: 4.6225
          : 9.9900
 Max.
> mydata[6] <- as.factor(mydata$CarType)</pre>
> mvdata
   ManHI ManBI IntI HVACi Safety CarType
  -5.27 -1.30 2.86 -4.85 4.04 Suv
-4.82 -5.38 9.72 -0.97 -4.57 Hatchback
9.57 -7.50 -7.61 1.33 -5.10 Hatchback
1
2
3
    2.84 -2.85 0.92 5.51 -6.64 Hatchback
4
5
    0.00 2.68 -4.15 0.85
                                 5.58
                                               SUV
    0.40 6.34 0.83 5.03 -8.10 SUV
5.94 3.14 -6.65 6.62 -1.32 Hatchback
6
    5.78 -1.75 -6.85 0.73
                                 5.50 Hatchback
8
    0.86 -4.32 8.10 -8.96
9
                                 3.10 Hatchback
10 7.36 7.42 0.27 -8.62 3.08 SUV
11 -7.95 -6.44 -4.68 3.86 9.82 Hatchback
12 -1.75 -8.09 -6.06 -9.13 -6.45
                                             SUV
```


Classification Model

Packets for classification:

1. Caret package -

Caret stands for classification and regression training and is arguably the biggest project in R.

One of the most powerful and popular packages is the caret library, which follows a consistent syntax for data preparation, model building, and model evaluation, making it easy for data science practitioners.

2. Class package –

A **class** is just a blueprint or a sketch of methods or attributes. It represents the set of properties or methods that are common to all objects of one type.

Dataset-Service traindata.csv

Description – This data set contains 315 observations of 6 variables.

Attributes -

- 1. OilQual
- 2. EnginePerf
- 3. NormMileage
- 4. TypeWear
- 5. HVACwear
- 6. Service

Dataset – Servicetestdata.csv

Description - This dataset contains 135 observations of 6 variables.

- <u>Attributes –</u>
 - 1. OilQual
 - 2. EnginePerf
 - 3. NormMileage
 - 4. TypeWear
 - 5. HVACwear
 - 6. Service

Predictknn -

Predictions are calculated for each test case by aggregating the responses of the knearest neighbours among the training cases. k may be specified to be any positive integer less than the number of training cases, but is generally between 1 and 10.

- 7. Aim: To find the performance of Classification Model
- a. To install relevant packages for classification.
- b. To choose a classifier for classification problems.
- c. To evaluate the performance of the classifier.

Datasets used are servicetraindata.csv and servicetestdata.csv

Program:

install.packages("caret") run command on console # install.packages("class") run command on console

```
mytraindata <- read.csv('servicetraindata.csv')
mytestdata <- read.csv('servicetestdata.csv')
mytraindata
mytestdata
str(mytraindata)
str(mytestdata)
summary(mytraindata)
summary(mytestdata)
mytraindata[6] <- as.factor(mytraindata$Service)
summary(mytraindata)
mytestdata[6] <- as.factor(mytestdata$Service)
summary(mytestdata)
library(class)
predictknn <- knn(train=mytraindata[,-6],
test=mytestdata[,-6],
cl=mytraindata$Service,
k = 3)
predictknn
```

library(caret)

confusionMatrix(data=predictknn,mytestdata\$Service)

Output:

```
Dutput:
#install.packages("caret") run command on console
mytraindata = read.csv('servicetraindata.csv')
mytraindata
oilqual EnginePerf NormMileage Tyrewear HVACwear
103.38821 103.504032 103.051485 106.172658 105.6888429
26.765516 26.188265 31.259536 29.186162 31.3112751
45.533338 49.906615 48.777581 48.113851 47.9520717
104.38821 103.284032 103.051485 105.822658 106.5368429
4.987185 4.941003 3.588986 8.363161 1.2802622
104.468821 103.744032 102.291485 106.172658 105.5368429
4.987185 5.851003 9.218986 8.373161 2.2802622
0 45.603338 49.666615 49.777581 51.263851 47.9520717
1 5.517185 6.651003 3.588968 8.373161 1.2802622
32.6.765516 29.418265 31.339536 29.036162 33.2812751
4 104.388821 103.744032 103.051485 108.092658 106.12802622
35.9.283282 64.641061 59.720883 63.304031 62.6205175
6 49.53333 49.666615 49.677581 48.263851 47.9520717
7 45.70333 46.786615 49.677581 48.263851 47.9520717
7 45.70333 49.666615 49.677581 48.263851 47.9520717
7 45.70333 49.666615 49.677581 48.263851 47.9520717
7 45.70333 49.666615 49.677581 48.263851 47.9520717
7 45.70333 49.666615 49.777581 48.263851 47.9520717
7 45.70333 49.666615 49.777581 48.263851 47.9520717
8 4.987185 2.891003 6.588986 11.783161 1.552622
9 46.473338 49.666615 49.777581 48.263851 47.9520717
8 4.987185 2.891003 6.588986 11.78161 1.5502622
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NO
Yes
Yes
NO
NO
NO
NO
NO
NO
NO
48.62/581
3.588986
31.339536
103.051485
59.720883
49.687581
49.777581
6.588986
49.777581
31.259536
49.777581
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Yes
No
Yes
No
No
Yes
No
No
No
                                                                                                                                                                                                                                                                                                                                                                                                   63.304031
48.263851
48.263851
11.783161
45.913851
                                      4.987185
46.473338
28.765516
46.073338
103.418821
                                                                                                                                                              2.891003 49.666615
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               5502622
9520717
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1
47
                                                                                                                                                                                                                                                                                                                                                                                            28.596162
48.263851
105.172658
                                                                                                                                                              27.418265 48.346615
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    31.1112751 45.9520717
                                                                                                                                                   102.634032
103.744032
48.806615
                                                                                                                                                                                                                                                                               103.051485
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          105.5368429
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        105.5368429
47.9520717
                                                                                                                                                                                                                                                                             101.541485
46.777581
                                                                                                                                                                                                                                                                                                                                                                                          105.172658
48.233851
                                        105.258821
45.533338
```

25	46.303338	49,666615	48,227581	45,263851	47,9520717	' NO	
20	4 007105	2 021002	E E0000C	0 272101	0 4000000	110	
20	4.90/105	5.021005	5.300300	0.3/3101	0.4602622	NO	
21	4.98/185	4.891003	4.358986	8.3/3161	1.6602622	NO NO	
28	28,795516	27.418265	31.699536	29.036162	31.3112751	L Yes	
29	104 698821	103 744032	103 051485	106 222658	105 5368429	NO.	
20	45 500021	10.000015	105.051405	47 512050	17, 0000723		
30	45.555558	49.666615	46.///581	47.513851	47.6620717	NO	
31	103.938821	103.744032	104.161485	106.172658	105.5368429) NO	
32	5,987185	4.891003	8.578986	10.543161	1,2802622	NO NO	
22	103 668821	103 744032	103 051485	106 172658	105 8168420	No.	
35	105.000021	103.744032	103.031405	100.172030	105.0100425		
34	106.428821	103./44032	103.311485	106.1/2658	105.5368425	NO NO	
35	64.413282	62.741061	59.720883	62.474031	63.7205175	Yes	
36	62 413282	62 741061	64 340883	64 324031	63 6205175	Yes	
27	AE E22220	49 016615	40 777591	40 262051	48 0720717	. No	
57	45.555556	40.910013	49.777301	40.203031	40.9720717	NO	
38	26./65516	28.608265	31.259536	30.036162	31.3612/51	L Yes	
39	104.388821	103.294032	104.051485	106.272658	105.5368429) NO	
40	62 413282	62 701061	59 720883	63 544031	63 6205175	Ves	
41	104 200021	102 024022	102 051405	105.000058	104 5209173	103	
41	104.300021	105.654052	105.051465	105.902658	104.5568425	NO NO	
42	3.127185	1.891003	5.658986	8.373161	1.2802622	No	
43	104.388821	104.514032	104.821485	106.172658	105.5368429) NO	
44	106 108821	103 744032	102 851485	106 172658	105 5368429	NO.	
77	100.100021	103.744032	102.001400	100.172030	105.5500425		
45	60.073282	62.741061	61.590883	63.304031	65.62051/5	yes	
46	3.987185	6.981003	6.588986	10.353161	1.2802622	2 No	
47	44.043338	47.666615	49.777581	47.863851	47.9520717	' NO	
48	105 028821	103 744032	102 661485	106 172658	105 5368429	NO.	
10	AE E22220	10 646615	10 777501	10 272051	48 0520717	7 11-	
49	45.55558	49.040015	49.///581	40.2/3051	40.9520/1/	NO	
50	104.278821	102.744032	103.051485	106.172658	105.7868429	NO NO	
51	65.413282	63.701061	59.720883	63.304031	60.9705175	Yes	
52	104 388821	104,744032	101 861485	106 172658	107 0568420	No	
52	45 00222	10 000015	40.777501	40.202051	47.0500423		
53	45.003338	49.096615	49.777581	48.263851	47.9520717	NO	
54	61.473282	62.741061	60.910883	63.304031	63.6205175	yes	
> m	ytestdata						
	oiloual	EnginePerf N	NormMileage	TvreWear	HVACwear	Service	
1	45 773338	49 936615	49 777581	48 263851	50 95207173	NO	
2	4 987185	7 891003	6 588986	9 493161	3 24026216	NO	
3	4 987185	4 891003	7 308986	8 373161	2 78026216	NO	
4	106 200021	104 454022	102 051485	106 202650	105 52684200	NO	
-	100.300021	102 744022	102 051485	106 122650	105.33084230	NO	
6	4 007105	4 891002	E 619996	9 272161	1 76026216	NO	
7	4.507105	4.891003	49 167591	5.373101 FO 6220F1	47 0520210	NO	
0	43.333330	30.000013	40.10/501	30.033031 31.336163	47.95207175	NO	
0	27.705510	29.130205	51.259556	31.220102	31.31127506	Yes	
9	26.765516	28.418265	30.809536	29.266162	31.3112/506	Yes	
10	104.388821	103./44032	105.051485	106.212658	104.24684290	No	
11	4.98/185	5.891003	7.228986	8.3/3161	1.08026216	No	
12	104.388821	103.434032	104.051485	106.062658	105.53684290	No	
13	4.987185	4.391003	6.588986	9.253161	-1.71973784	No	
14	104.338821	103.744032	103.591485	106.172658	105.53684290	No	
15	7.987185	4.661003	6.588986	8.373161	2.25026216	No	
16	4.987185	5.171003	6.588986	10.373161	0.08026216	No	
17	63.413282	62.451061	60.520883	63.304031	62.62051752	Yes	
18	6.897185	4.891003	6.588986	7.373161	3.55026216	NO	
19	103.648821	103.744032	102.051485	106.662658	105.53684290	No	
20	58.963282	62.741061	61.570883	63.304031	62.62051752	Yes	1
21	26.745516	27.418265	31.259536	31.036162	31.26127506	Yes	
22	104.388821	103.584032	103.371485	106.172658	104.53684290	No	
23	63.083282	64.741061	59.720883	64.914031	62.62051752	Yes	
24	4.877185	4.461003	6.588986	8.373161	2.28026216	NO	
25	4.987185	2.891003	4.808986	6.143161	1.28026216	NO	
26	104.328821	103.744032	103.051485	106.172658	105.53684290	NO	
27	4.987185	2.891003	6.588986	10.833161	0.10026216	NO	
28	2.597185	3.541003	6.588986	8.373161	1.28026216	NO	
> 50	nmary(mytestda	ta)					
		····		100			
	DTIQUAI	EnginePert	NormMileag	ge Tyre	ewear H	IVACwear	Service
Min	. 2 597	Min • 1.891	Min · 3	589 Min	· 6 143 Min	· -1 72	No .99
enn							110 1.55
lst	Qu.: 26.696	1st Qu.: 2/.418	1st Qu.: 31	L.260 lst Qu.	: 28.901 1st	Qu.: 31.31	Yes:36
Mod	inn + 61 022	Modian + 61 E01	Madian . EC	2E1 Madian	· 61 204 Mode		
Meu	Idii . 01.025	Meulali . 01.301	. Meuran	Meuran	. 01.304 Meul	dii . 02.02	
Mea	1 : 58.629	Mean : 59.077	Mean : 59	.118 Mean	: 60.864 Mear	: 58.99	
2	01 104 220	2.4 0. 102 744	2	0.001 2.4 0.4	.100 172 2.1	0 105 22	
ord	Qu.:104.229	510 Qu.:105./44	5ru Qu.:10:	o.uo⊥ sra QU.	.100.1/3 Srd	Qu.:105.33	
Max	:106.389	Max. :105.744	Max. :10	.051 Max	:108.173 Max	:105.83	
- INA	and dec. Fell	the first (du dans Co			. 200100	
> my	traindata[6] =	as. Tactor (mytra	indatasservice	2)			
> 511	mmary(mytraind	ata)					
Jul	initiar y (my cr u rifu		1	200	100		
1	DilQual	EnginePerf	NormMilea	age Tyr	rewear	HVACwear	
Min	· 0 0872	Min • 1 00	1 Min ·	3 359 Min	· 6 212 Min	· -1 72	
et f f	0.30/2	MIII 1.03	r⊥ P(11)	J.JJJ [11].	. 0.213 MII	1./2	
1st	Qu.: 26.7655	1st Qu.: 27.41	8 1st Ou.:	31.260 1st Ou	I.: 29.036 1st	: Qu.: 31.34	
Mad	ion 1 50 0000	Nodian : 50 74	1 Nodian .	7 221 44		tion 1 co co	
Med	idil : 39.0033	meuran : 59./4	Median : :	07.221 Median	1.00.304 Mec	11dfi : 60.62	
Mea	1 : 59,6493	Mean : 60.30	6 Mean : 6	0.297 Mean	: 61.759 Mea	in : 60.39	
2	0104 2000	2	المعامد الم	12 0F1 2	. 100 173 3	1 00 1105 54	
srd	QU.:104.3888	sra Qu.:103./4	94 ora Qu.:10	is.usi sua dr	1.:100.1/5 Src	i Qu.:105.54	
Max	:106.4288	Max. :105 74	4 Max. 10)5.051 Max	:108.173 Max	. :107 54	
- MAN				PIGAT	.10011/5 14/		
Ser	vice						

No :232 Yes: 83 > mvtestdata[6] = as.factor(mvtestdata\$Service) > summary(mytestdata) EnginePerf NormMileage oilqual HVACwear Service TyreWear Min. : 2.597 Min. : 1.891 Min. : 3.589 Min. : 6.143 Min. : -1.72 No :99 1st Qu.: 26.696 1st Qu.: 27.418 1st Qu.: 31.260 1st Qu.: 28.901 1st Qu.: 31.31 Yes:36 Median : 61.023 Median : 61.501 Median : 59.351 Median : 61.304 Median : 62.62 Mean : 58.629 Mean : 59.077 Mean : 59.118 Mean : 60.864 Mean : 58.99 3rd Qu.:103.051 3rd Qu.:104.229 3rd Qu.:103.744 3rd Qu.:106.173 3rd Qu.:105.33 Max. :106.389 Max. :105.744 Max. :105.051 Max. :108.173 Max. :105.83 > library(class) > predictknn = knn(train=mytraindata[,-6], + test=mytestdata[,-6], + cl = mytraindata\$Service, k=3) > predictknn [1] NO NO NO NO NO NO NO YES YES NO NO NO NO NO NO NO YES NO NO YES YES NO YES [24] NO YES NO NO NO NO NO YES NO YES NO NO [47] NO YES YES NO YES NO YES NO YES YES YES NO YES [70] NO NO YES NO NO NO NO NO NO YES YES YES YES NO YES NO NO YES YES YES NO NO NO [93] YES NO YES NO YES NO NO NO NO NO YES NO YES NO [116] YES YES NO YES NO NO NO NO NO YES NO NO NO NO NO NO NO YES NO NO Levels: No Yes > library(caret) > str(mytraindata) 'data.frame': 315 obs. of 6 variables: \$ oilqual : num 103.4 26.8 62.4 45.5 104.4 ... \$ EnginePerf : num 103.5 26.2 63.7 49.9 103.3 ... \$ NormMileage: num 103.1 31.3 59.7 48.8 103.1 ... \$ TyreWear : num 106.2 29.2 64.7 48.1 105.8 ... \$ HVACwear : num 105.7 31.3 58.6 48 106.5 ...
\$ Service : Factor w/ 2 levels "No", "Yes": 1 2 2 1 1 1 1 1 1 1 ... > str(mytestdata) 'data.frame': 135 obs. of 6 variables: \$ oilqual : num 45.77 4.99 4.99 106.39 104.39 ... \$ EnginePerf : num 49.94 7.89 4.89 104.45 103.74 ... \$ NormMileage: num 49.78 6.59 7.31 103.05 103.05 ... \$ TyreWear : num 48.26 9.49 8.37 106.28 106.13 ... \$ HVACwear : num 50.95 3.24 2.78 105.54 105.78 ... \$ Service : Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 2 2 1 ... > summary(mytraindata) NormMileage oilqual EnginePerf TyreWear HVACwear Min. : 0.9872 Min. : 1.891 Min. : 3.359 Min. : 6.213 Min. : -1.72 1st Qu.: 26.7655 1st Qu.: 27.418 1st Qu.: 31.260 1st Qu.: 29.036 1st Qu.: 31.34 Median : 59.6633 Median : 59.741 Median : 57.221 Median : 60.304 Median : 60.62 Mean : 59.6493 Mean : 60.306 Mean : 60.297 Mean : 61.759 Mean : 60.39 3rd Qu.:104.3888 3rd Qu.:103.744 3rd Qu.:103.051 3rd Qu.:106.173 3rd Qu.:105.54 Max. :106.4288 Max. :105.744 Max. :105.051 Max. :108.173 Max. :107.54 Service No :232 Yes: 83 > confusionMatrix(data=predictknn, mytestdata\$Service) Confusion Matrix and Statistics Reference Prediction No Yes No 99 0 Yes 0 36 Accuracy : 1 95% CI : (0.973, 1) No Information Rate : 0.7333 P-Value [Acc > NIR] : < 2.2e-16 Карра : 1 Mcnemar's Test P-Value : NA Sensitivity : 1.0000 Specificity : 1.0000 Pos Pred Value : 1.0000 Neg Pred Value : 1.0000 Prevalence : 0.7333 Detection Rate : 0.7333 Detection Prevalence : 0.7333 Balanced Accuracy : 1.0000 'Positive' Class : No

Clustering Model

8a -

K-Means Clustering in R Programming language K-Means is an iterative hard clustering technique that uses an <u>unsupervised learning algorithm</u>. In this, total numbers of clusters are pre-defined by the user and based on the similarity of each data point, the data points are clustered. This algorithm also finds out the centroid of the cluster.

<u>Algorithm -</u>

- Specify number of clusters (K)
- Randomly assign each data point to a cluster
- Calculate cluster centroids
- Re-allocate each data point to their nearest cluster centroid.

• Re-figure cluster centroid.

8b -

1. We will use the built in read.csv(...) function call, which reads the data in as a data frame, and assign the data frame to a variable (using <-) so that it is stored in R's memory. Then we will explore some of the basic arguments that can be supplied to the function.

2. The default for read.csv(...) is to set the header argument to TRUE. This means that the first row of values in the .csv is set as header information (column names). If your data set does not have a header, set the header argument to FALSE

3. To see the internal structure, we can use another function, str(). In this case, the data frame's internal structure includes the format of each column.

Library – factoextra

" factoextra " is an R package making easy to extract and visualize the output of exploratory multivariate data analyses.

• It produces a ggplot2-based elegant data visualization with less typing.

• It contains also many functions facilitating clustering analysis and visualization.

8 . Aim: To evaluate the performance of Clustering Model

a. Clustering algorithms for unsupervised classification.

b. Plot the cluster data using R visualizations.

Datasets used : tripdetails.csv **Program:**

mydata<-read.csv('tripdetails.csv') mydata str(mydata) summary(mydata) myclusters<-kmeans(mydata[-1],5) myclusters library(factoextra) fviz_cluster(myclusters,da=mydata,goem="point")

Output:

> 1	mydata =	= read.csv("tripdeta	ils.csv")					
> 1	mydata								
	TripID	TripLength	MaxSpeed	MostFreqSpeed	TripDuration	Brakes	IdlingTime	Honking	
1	1	21	51	14	93	307	27	112	
2	2	148	130	106	156	226	5	114	
3	3	18	38	16	100	351	26	107	
4	4	22	43	48	36	17	4	5	
5	5	183	108	90	171	88	5	29	
6	6	18	43	13	64	136	25	21	
7	7	20	37	15	85	121	26	23	
8	8	21	38	14	69	114	25	20	-
9	9	181	99	108	155	86	5	25	
10	10	174	100	92	133	106	5	34	
11	11	177	130	85	152	210	5	128	
12	12	17	67	41	30	33	4	17	
13	13	19	42	14	102	429	27	97	
14	14	18	39	39	37	20	4	5	
15	15	17	39	16	87	115	25	26	
16	16	193	122	101	150	183	6	94	
17	17	17	61	43	26	40	5	23	
18	18	20	35	43	42	15	4	5	
19	19	21	48	15	88	384	27	98	
20	20	21	39	15	92	131	24	23	
21	21	181	111	100	147	88	6	33	
22	22	20	35	15	88	128	26	22	
23	23	22	35	14	79	343	28	100	
24	24	20	43	16	91	361	26	96	
25	25	20	41	14	87	405	27	84	
26	26	21	37	16	94	120	27	20	
27	27	21	44	45	42	17	5	5	

29 30 32 33 34 35 36 37 38 34 41 44 45 55 55 55 55 55 57	29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 44 43 44 43 44 51 52 53 54 55 57	176 151 23 19 23 171 18 163 193 151 19 20 195 20 20 195 20 20 19 20 20 19 20 20 20 20 20 20 20 20 20 20 20 20 20	126 120 59 40 64 122 48 105 124 39 49 110 59 54 35 103 39 53 62 109 46 44 58 38 45 54 131 43	118 105 43 13 39 106 36 95 90 81 46 13 98 42 42 13 87 17 14 34 85 40 15 40 13 48 14 87 15 15	162 128 29 76 218 133 143 143 163 157 30 34 83 109 98 90 27 158 31 95 33 87 72 83 19 94	174 195 37 144 29 205 19 89 76 87 14 361 83 37 123 361 83 37 123 100 128 265 34 82 17 131 34 99 20 373 85 139	6 5 26 5 4 5 5 5 23 5 5 27 5 23 5 5 27 5 18 23 5 5 27 5 18 23 5 6 5 28 5 24 4 25 5 24 32	150 108 24 23 21 138 4 26 29 30 5 101 29 18 22 23 30 22 100 16 27 5 98 30 19	

Experiment-9

Reading Xml File

Aim: To read an XML file.

XML file:

<RECORDS> <EMPLOYEE> <ID>1</ID> <NAME>Rick</NAME> <SALARY>623.3</SALARY> <STARTDATE>1/1/2012</STARTDATE> <DEPT>IT</DEPT> </EMPLOYEE> <EMPLOYEE> <ID>2</ID> <NAME>Dan</NAME> <SALARY>515.2</SALARY> <STARTDATE>9/23/2013</STARTDATE> <DEPT>Operations</DEPT> </EMPLOYEE> <EMPLOYEE> <ID>3</ID> <NAME>Michelle</NAME> <SALARY>611</SALARY> <STARTDATE>11/15/2014</STARTDATE> <DEPT>IT</DEPT> </EMPLOYEE> <EMPLOYEE> <ID>4</ID> <NAME>Ryan</NAME> <SALARY>729</SALARY> <STARTDATE>5/11/2014</STARTDATE <DEPT>HR</DEPT> </EMPLOYEE> <EMPLOYEE> <ID>5</ID> <NAME>Gary</NAME> <SALARY>843.25</SALARY>
<STARTDATE>3/27/2015</STARTDATE>
<DEPT>Finance</DEPT> </EMPLOYEE> <EMPLOYEE> <ID>6</ID> <NAME>Nina<NAME>
<SALARY>578
<SALARY>
<STARTDATE>5/21/2013</STARTDATE</pre> <DEPT>IT</DEPT> </EMPLOYEE> <EMPLOYEE> $<\!\!ID\!\!>\!\!7\!<\!\!/ID\!\!>$ <NAME>Simon</NAME> <SALARY>632.8</SALARY> <STARTDATE>7/30/2013</STARTDATE> <DEPT>Operations</DEPT> </EMPLOYEE> <EMPLOYEE> <ID>8</ID> <NAME>Guru</NAME> <SALARY>722.5</SALARY> <STARTDATE>6/17/2014</STARTDATE> <DEPT>Finance</DEPT> </EMPLOYEE>

</RECORDS>

Program:

Load the package required to read XML files.
install.packages("XML")
library("XML")

Also load the other required package. library("methods")

Give the input file name to the function.
result <- xmlParse(file = "D:/emp.xml")</pre>

Print the result.
print(result)

Output:

```
ibrary("XML")
# Also load the other required package.
library("methods")
# Give the input file name to the function.
result=xmlParse(file = "D:/emp.xml.txt")

>
>
> result=xmiParse(til
> # Print the result.
> print(result)
<?xml version="1.0"?>
<RECORDS>
   <EMPLOYEE>
      <ID>1</ID>
</NAME>Rick</NAME>
<SALARY>623.3</SALARY>
<STARTDATE>1/1/2012</STARTDATE>
       <DEPT>IT</DEPT>
   </EMPLOYEE>
   <EMPLOYEE>
      <ID>2</ID>
      <ID>2</ID>
</AME>Dan</NAME>
<SALARY>515.2</SALARY>
<STARTDATE>9/23/2013</STARTDATE>
</DEPT>Operations</DEPT>
   </EMPLOYEE>
   <EMPLOYEE>
      <ID>3</ID>
<NAME>Michelle</NAME>
      <salary>611</salary>
<startdate>11/15/2014</startdate>
  <DEPT>IT</DEPT>
</EMPLOYEE>
<EMPLOYEE>
      <ID>4</ID>
      <NAME>Ryan</NAME>
<SALARY>729</SALARY>
      <STARTDATE>5/11/2014</STARTDATE>
      <DEPT>HR</DEPT>
   </EMPLOYEE>
  <EMPLOYEE>
      <ID>5</ID>
      <NAME>Gary</NAME>
      <salary>843.25</salary>
<startdate>3/27/2015</startdate>
      <DEPT>Finance</DEPT>
   </EMPLOYEE>
   <EMPLOYEE>
      <ID>6</ID>
<NAME>Nina</NAME>
      <SALARY>578</SALARY>
      <startdate>5/21/2013</startdate>
      <DEPT>IT</DEPT>
   </EMPLOYEE>
   <EMPLOYEE>
      <ID>7</ID>
      <NAME>Simon</NAME>
      <salary>632.8</salary>
<startdate>7/30/2013</startdate>
      <DEPT>Operations</DEPT>
   </EMPLOYEE>
```

```
<EMPLOYEE>
<ID>8</ID>
<NAME>Guru</NAME>
<SALARY>722.5</SALARY>
<STARTDATE>6/17/2014</STARTDATE>
<DEPT>Finance</DEPT>
</EMPLOYEE>
</RECORDS>
```

>