
MUFFAKHAM JAH COLLEGE OF ENGINEERING AND
TECHNOLOGY

Banjara Hills, Hyderabad, Telangana

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Distributed System Laboratory Manual

Academic Year 2016-2017

Table of Contents

I Contents
1. Vision of the Institution . i
2. Mission of the Institution . i
3. Department Vision . ii
4. Department Mission . ii
5. Programme Education Objectives . iii
6. Programme Outcomes . iv
7. Programme Specific Outcomes . v

II Programs
1. Write a program to create FTP client using GUI 1
2. Write a program to create chat application 6
3. Write a program to create chat server . 9
4. Write a program to simulate two phase commit protocol 13
5. Write a program to DNS protocol using RMI 16

Part I

Contents

1. Vision of the Institution

To be part of universal human quest for development and progress by contributing high
calibre, ethical and socially responsible engineers who meet the global challenge of build-
ing modern society in harmony with nature.

2. Mission of the Institution

• To attain excellence in imparting technical education from undergraduate through
doctorate levels by adopting coherent and judiciously coordinated curricular and
co-curricular programs.

• To foster partnership with industry and government agencies through collaborative
research and consultancy.

• To nurture and strengthen auxiliary soft skills for overall development and improved
employability in a multi-cultural work space.

• To develop scientific temper and spirit of enquiry in order to harness the latent
innovative talents.

• To develop constructive attitude in students towards the task of nation building
and empower them to become future leaders

• To nourish the entrepreneurial instincts of the students and hone their business
acumen.

• To involve the students and the faculty in solving local community problems through
economical and sustainable solutions.

i

3. Department Vision

To contribute competent computer science professionals to the global talent pool to meet
the constantly evolving societal needs.

4. Department Mission

Mentoring students towards a successful professional career in a global environment
through quality education and soft skills in order to meet the evolving societal needs.

ii

5. Programme Education Objectives

1. Graduates will demonstrate technical skills and leadership in their chosen fields of
employment by solving real time problems using current techniques and tools.

2. Graduates will communicate effectively as individuals or team members and be
successful in the local and global cross cultural working environment.

3. Graduates will demonstrate lifelong learning through continuing education and pro-
fessional development.

4. Graduates will be successful in providing viable and sustainable solutions within
societal, professional, environmental and ethical contexts

iii

6. Programme Outcomes

1. Engineering knowledge: Apply the knowledge of mathematics, science, engi-
neering fundamentals and an engineering specialization to the solution of complex
engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first prin-
ciples of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge
and research methods including design of experiments, analysis and interpretation
of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources,
and modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowl-
edge to assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsi-
bilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a mem-
ber or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with
the engineering community and with society at large, such as, being able to com-
prehend and write effective reports and design documentation, make effective pre-
sentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding
of the engineering and management principles and apply these to one’s own work,
as a member and leader in a team, to manage projects and in multidisciplinary
environments.

12. Lifelong learning: Recognize the need for, and have the preparation and ability to
engage in independent and lifelong learning in the broadest context of technological
change.

iv

7. Programme Specific Outcomes

The graduates will be able to:

PSO1: Demonstrate understanding of the principles and working of the hardware and
software aspects of computer systems.

PSO2: Use professional engineering practices, strategies and tactics for the development,
operation and maintenance of software

PSO3: Provide effective and efficient real time solutions using acquired knowledge in vari-
ous domains.

v

Part II

Programs

Distributed System Lab Manual

Program 1

FTP CLIENT USING GUI

Problem Definition

Write a program to create FTP client using GUI

Problem Description

A FTP client is to be created that can contact the FTP server to get services form it on
behalf of the user.

A FTP client has to first contact the ftp server and provide the credentials.

In upload operation a file from the computer on which client is running is transferred
to the ftp server, here the name and path of both source and destination files has to be
given.

In download operation a file from the ftp server is transferred to the computer on which
client is running, here also the name and path of both source and destination files has to
be given.

In listing operation, the contents of the ftp server as listed, same as dir/ls on local
machine.

Steps: Downloading

1. Write the code to create and place appropriate GUI components on the dailog box.

2. Connect or ftp server by providing the user name and password.

3. Execute ‘get’ command on ftp server.

Steps: Uploading

1. Write the code to create and place appropriate GUI components on the dailog box.

2. Connect or ftp server by providing the username and password.

3. Execute ‘put’ command on ftp server.

Steps: Listing

1. Write the code to create and place appropriate GUI components on the dailog box.

2. Connect or ftp server by providing the username and password.

3. Execute ‘lst’command on ftp server.

CSE Department, MJCET 1

Distributed System Lab Manual

The server process should work in connection -oriented and concurrent-server mode. You
need to first start the server process in a server host and publish its host name and port
number. A user on another host can then issue a command like

%myftp server−host−name server−port−number

to download a file from or upload a file to the server. After accepting the above myftp
command, the client process should responds with prompt ftp>, waiting for user’s ftp
commands.

Requirements:

1. myftp is so named as to tell from the standard ftp command.

2. You need to consider the following ftp commands: ftp > put filename : to upload
a file named filename to the server
ftp > get filename : to download a file named filename from the server
ftp > ls : to list the files under the present directory of the server
ftp > cd : to change the present working directory of the server
ftp > pwd : to display the present working directory of the server
ftp>!ls : to list the files under the present directory of the client
ftp>!cd : to change the present directory of the client
ftp>!pwd : to display the present working directory of the client
ftp>quit : to quit from ftp session and return to Unix prompt.

Pseudocode for Client Appl:

sd=socket(AF_INET, SOCK_STREAM, 0)

get server host name from argv[1] and server port number from argv[2]

connect(sd, &server-socket-address,...)

While (1) {

show ftp>

fgets a ftp command line from keyboard

if the command is "put a existed file"

0. send the command to the server

1. open the file

2. read the file

3. write the file to server

4. close the file

if the command is "put a non-existed file" display "filename: no such

file on client"

CSE Department, MJCET 2

Distributed System Lab Manual

if the command is "get a file"

1. send the command to the server

2. fgets first line from the server:existed or nonexisted

3. if existed

3.1 read the file from the server

3.2 write the file to the local directory

4. if nonexisted

display "filename: no such file on server"

if the command is "cd ..." , "ls ...", or \pwd"

1. send the command to the server

2. fgets a reply line from the socket to see if the command is

successfully executed

3. read from the socket and display correspondingly.

if the command is "!ls ..." or \!pwd"

1. call system(command) locally

if the command is "!cd directory"

1. call chdir (directory) locally. Note that system() cannot

execute "cd ..."

if the command is "quit"

1. close the socket

2. break or exit

otherwise: show "An invalid ftp command."

}

CSE Department, MJCET 3

Distributed System Lab Manual

Algorithm for FTP Server:

Server:

1. Include the necessary header files.

2. Create a socket using socket function with family AF INET, type as SOCK STREAM.

3. Initialize server address to 0 using the bzero function.

4. Assign the sin family to AF INET, sin addr to INADDR ANY, sin port to dynam-
ically assigned port number.

5. Bind the local host address to socket using the bind function.

6. Listen on the socket for connection request from the client.

7. Accept connection request from the Client using accept function.

8. Within an infinite loop, receive the file name from the Client.

9. Open the file, read the file contents to a buffer and send the buffer to the Client.

Client:

1. Include the necessary header files.

2. Create a socket using socket function with family AF INET, type as SOCK STREAM.

3. Initialize server address to 0 using the bzero function.

4. Assign the sin family to AF INET.

5. Get the server IP address and the Port number from the console.

6. Using gethostbyname function assign it to a hostent structure, and assign it to
sin addr of the server address structure.

7. Within an infinite loop, send the name of the file to be viewed to the Server.

8. Receive the file contents, store it in a file and print it on the console.

CSE Department, MJCET 4

Distributed System Lab Manual

Input & Output Screen Shots:

GET

PUT

CSE Department, MJCET 5

Distributed System Lab Manual

Program 2

CREATE CHAT APPLICATION

Problem Definition

Write a program to create chat application

Problem Description

Using TCP sockets connection has to be established, then messages can be send in full
duplex manner until the connection is closed.

Differences between UDP and TCP

TCP is connection oriented, and provides error and flow control. UDP provides no such
services, and relies on the application layer for them. UDP allows sending a packet with
or without checksum; no connection is maintained, so each packet is sent independently.
If a packet gets lost or the packets arrive out of order, then the application should detect
and remedy the situation on its own. Also, UDP doesn′t give the security features of
TCP like the three-way handshake.

UDP supports multicast sending a single packet to multiple machines. This is useful as it
saves bandwidth, each packet is transmitted only once and the entire network receives it.
UDP is also used in places where the overhead (delay) involved with TCP is expensive.

Some applications of UDP are in VoIP, streaming of audio and video, DNS, TFTP, SNMP,
online gaming, and etcetera.

Given Requirements

There are two hosts, Client and Server. The Client accepts the message from the user
and sends it to the Server. The Server receives the message, prints it and echoes the
message back to the Client.

Technical Objective

To implement an UDP Echo Client-Server application , where the Client on establishing
a connection with the Server, sends a string to the Server. The Server reads the String,
prints it and echoes it back to the Client.

CSE Department, MJCET 6

Distributed System Lab Manual

Algorithm

Server:

1. Include the necessary header files.

2. Create a socket using socket function with family AF INET, type as SOCK DGRAM.

3. Initialize server address to 0 using the bzero function.

4. Assign the sin family to AF INET, sin addr to INADDR ANY, sin port to SERVER PORT,
a macro defined port number.

5. Bind the local host address to socket using the bind function.

6. Within an infinite loop, receive message from the client using recvfrom function,
print it on the console and send (echo) the message back to the client using sendto
function.

Client:

1. Include the necessary header files.

2. Create a socket using socket function with family AF INET, type as SOCK DGRAM.

3. Initialize server address to 0 using the bzero function.

4. Assign the sin family to AF INET.

5. Get the server IP address and the Port number from the console.

6. Using gethostbyname function assign it to a hostent structure, and assign it to
sin addr of the server address structure.

7. Within an infinite loop, read message from the console and send the message to the
server using the sendto function.

8. Receive the echo message using the recvfrom function and print it on the console.

Sample Output

Server:
(Host Name:Root1)

[root@localhost 4ita33]# vi udpserver.c

[root@localhost 4ita33]# cc udpserver.c

[root@localhost 4ita33]# ./a.out

Server is Running...

Message is received

Send data to UDP Client: hi

Message is received

Send data to UDP Client: how are u

CSE Department, MJCET 7

Distributed System Lab Manual

Client:
(Host Name:Root2)

[root@localhost 4ita33]# vi udpclient.c

[root@localhost 4ita33]# cc udpclient.c

[root@localhost 4ita33]# ./a.out 127.0.0.1

Enter input data :

hi

Data sent to UDP Server:hi

Received Data from server: hi

Enter input data :

how are u

Data sent to UDP Server:how are u

Received Data from server: how are u

INFERENCE:

Thus, the UDP ECHO client server communication is established by sending the message
from the client to the server and server prints it and echoes the message back to the client.

CSE Department, MJCET 8

Distributed System Lab Manual

Program 3

CREATE CHAT SERVER

Client/Server Communication

At a basic level, network-based systems consist of a server, client, and a media for commu-
nication as shown in below figure. A computer running a program that makes a request
for services is called client machine. A computer running a program that offers requested
services from one or more clients is called server machine. The media for communication
can be wired or wireless network.

Fig. 13.2 TCP/IP software stack

Generally, programs running on client machines make requests to a program (often called
as server program) running on a server machine. They involve networking services pro-
vided by the transport layer, which is part of the Internet software stack, often called
TCP/IP (Transport Control Protocol/Internet Protocol) stack, shown in Fig. 13.2. The
transport layer comprises two types of protocols, TCP (Transport Control Protocol) and
UDP (User Datagram Protocol). The most widely used programming interfaces for these
protocols are sockets.

TCP is a connection-oriented protocol that provides a reliable ow of data between two
computers. Example applications that use such services are HTTP, FTP, and Telnet.

UDP is a protocol that sends independent packets of data, called datagrams, from one
computer to another with no guarantees about arrival and sequencing. Example appli-
cations that use such services include Clock server and Ping.

CSE Department, MJCET 9

Distributed System Lab Manual

The TCP and UDP protocols use ports to map incoming data to a particular process
running on a computer. Port is represented by a positive (16-bit) integer value. Some
ports have been reserved to support common/well known services:

• ftp 21/tcp

• telnet 23/tcp

• smtp 25/tcp

• login 513/tcp

• http 80/tcp,udp

• https 443/tcp,udp

User-level process/services generally use port number value >= 1024.

Here we are creating a chat server using TCP

Given Requirements

TThere are two hosts, Client and Server. Both the Client and the Server exchange
message i.e. they send messages to and receive message from the other. There is a two
way communication between them.

Technical Objective

To implement a full duplex application, where the Client establishes a connection with
the Server. The Client and Server can send as well as receive messages at the same time.
Both the Client and Server exchange messages.

Algorithm

Server:

1. Include the necessary header files.

2. Create a socket using socket function with family AF INET, type as SOCK STREAM.

3. Initialize server address to 0 using the bzero function.

4. Assign the sin family to AF INET, sin addr to INADDR ANY, sin port to dynam-
ically assigned port number.

5. Bind the local host address to socket using the bind function.

6. Listen on the socket for connection request from the client.

7. Accept connection request from the Client using accept function.

8. Fork the process to receive message from the client and print it on the console.

9. Read message from the console and send it to the client.

CSE Department, MJCET 10

Distributed System Lab Manual

Client:

1. Include the necessary header files.

2. Create a socket using socket function with family AF INET, type as SOCK STREAM.

3. Initialize server address to 0 using the bzero function.

4. Assign the sin family to AF INET.

5. Get the server IP address and the Port number from the console.

6. Using gethostbyname function assign it to a hostent structure, and assign it to
sin addr of the server address structure.

7. Request a connection from the server using the connect function.

8. Fork the process to receive message from the server and print it on the console.

9. Read message from the console and send it to the server.

Sample Output

Server:
(Host Name:Root1)

[root@localhost 4ita33]# vi fserver.c

[root@localhost 4ita33]# cc fserver.c

[root@localhost 4ita33]# ./a.out

Server is running.......

Enter the input data:

Received message from the client:hi

how are u

Data sent...

Enter the input data:

Received message from the client:i am fine

CSE Department, MJCET 11

Distributed System Lab Manual

Client:
(Host Name:Root2)

[root@localhost 4ita33]# vi fclient.c

[root@localhost 4ita33]# cc fclient.c

[root@localhost 4ita33]# ./a.out 127.0.0.1

Enter the input data:

hi

Data sent...

Enter the input data:

Received message from the server:how are u

i am fine

Data sent...

Enter the input data:

INFERENCE:

Thus the chat application full duplex communication is established by sending the request
from the client to the server, server gets the message and gives response to the client and
prints it.

CSE Department, MJCET 12

Distributed System Lab Manual

Program 4

SIMULATE TWO PHASE COMMIT PROTOCOL

Problem Definition

Two phase commit protocol is used for making a concensus when transactions are exe-
cuted in distributed environments.

Problem Description

It is a distributed algorithm that coordinates all the processes that participate in a
distributed atomic transaction on whether to commit or abort (roll back) the transaction.

The protocol works in the following manner: one node is designated the coordinator,
which is the master site, and the rest of the nodes in the network are designated the
cohorts. The protocol assumes that there is stable storage at each node with a write-
ahead log, that no node crashes forever, that the data in the write-ahead log is never
lost or corrupted in a crash, and that any two nodes can communicate with each other.
The last assumption is not too restrictive, as network communication can typically be
rerouted. The first two assumptions are much stronger; if a node is totally destroyed then
data can be lost.

The protocol is initiated by the coordinator after the last step of the transaction has
been reached. The cohorts then respond with an agreement message or an abort message
depending on whether the transaction has been processed successfully at the cohort.

Algorithm

Commit request phase (or) voting phase:

1. The coordinator sends a query to commit message to all cohorts and waits until it
has received a reply from all cohorts.

2. The cohorts execute the transaction up to the point where they will be asked to
commit. They each write an entry to their undo log and an entry to their redo log.

3. Each cohort replies with an agreement message (cohort votes Yes to commit), if
the transaction succeeded, or an abort message (cohort votes No, not to commit),
if the transaction failed.

Commit phase (or) Completion phase:

CSE Department, MJCET 13

Distributed System Lab Manual

Success

1. If the coordinator received an agreement message from all cohorts during the
commit-request phase.

2. The coordinator sends a commit message to all the cohorts.

3. Each cohort completes the operation, and releases all the locks and resources held
during the transaction.

4. Each cohort sends an acknowledgment to the coordinator.

5. The coordinator completes the transaction when acknowledgments have been re-
ceived.

Failure

1. If any cohort sent an abort message during the commit-request phase:

2. The coordinator sends a rollback message to all the cohorts.

3. Each cohort undoes the transaction using the undo log, and releases the resources
and locks held during the transaction.

4. Each cohort sends an acknowledgment to the coordinator.

5. The coordinator undoes the transaction when all acknowledgements have been re-
ceived.

Expected Output:

CSE Department, MJCET 14

Distributed System Lab Manual

CSE Department, MJCET 15

Distributed System Lab Manual

Program 5

DNS PROTOCOL USING RMI

Problem Definition

A server has to be designed that takes a string in input and returns another string in
output depending upon the given input string.

Problem Description

A RMI applications often comprise two separate programs, a server and a client. A typical
server program creates some remote objects, makes references to these objects accessible,
and waits for clients to invoke methods on these objects. A typical client program obtains
a remote reference to one or more remote objects on a server and then invokes methods
on them. RMI provides the mechanism by which the server and the client communicate
and pass information back and forth. Such an application is sometimes referred to as a
distributed object application.

Here in this application the client sends the string which is the name of the website and
server returns the IP address of that website.

Java RMI - Remote Method Invocation

• A primary goal of RMI is to allow programmers to develop distributed Java pro-
grams

• RMI is the Java Distributed Object Model for facilitating communications among
distributed objects

• RMI is a higher-level API built on top of sockets

• Socket-level programming allows you to pass data through sockets among computers

• RMI enables you not only to pass data among objects on different systems, but also
to invoke methods in a remote object

The Differences between RMI and Traditional Client/Server Approach

• RMI component can act as both a client and a server, depending on the scenario
in question.

• RMI system can pass functionality from a server to a client and vice versa. A
client/server system typically only passes data back and fourth between server and
client.

CSE Department, MJCET 16

Distributed System Lab Manual

Interfaces: The Heart of RMI

• In RMI, the definition of a remote service is coded using a Java interface.

• The implementation of the remote service is coded in a class

• The key to understanding RMI is to remember that interfaces define behavior and
classes define implementation.

RMI supports two classes:

1. The first class is the implementation of the behavior, and it runs on the server.

2. The second class acts as a proxy for the remote service and it runs on the client.

How it works A client program makes method calls on the proxy object, RMI sends
the request to the remote JVM, and forwards it to the implementation.

Any return values provided by the implementation are sent back to the proxy and then
to the client’s program.

RMI Architecture Layers

The RMI implementation is built from three abstraction layers.
The first is the Stub and Skeleton layer. This layer intercepts method calls made by
the client to the interface reference variable and redirects these calls to a remote RMI
service.

CSE Department, MJCET 17

Distributed System Lab Manual

The next layer is the Remote Reference Layer. This layer understands how to inter-
pret and manage references made from clients to the remote service objects. In JDK 1.1,
this layer connects clients to remote service objects that are running and exported on a
server. The connection is a one-to-one (unicast) link. In the Java 2 SDK, this layer was
enhanced to support the activation of dormant remote service objects via Remote Object
Activation.

The Transport Layer is based on TCP/IP connections between machines in a network.
It provides basic connectivity, as well as some firewall penetration strategies.

RMI works as follows:

1. A server object is registered with the RMI registry.

2. A client looks through the RMI registry for the remote object.

3. Once the remote object is located, its stub is returned in the client.

4. The remote object can be used as a local object. The communication between client
and server happens in terms of stubs and skeleton

RMI system is already designed, you take the following steps to build a system:

1. Write and compile Java code for interfaces

2. Write and compile Java code for implementation classes

3. Generate Stub and Skeleton class files from the implementation classes

4. Write Java code for a remote service host program

5. Develop Java code for RMI client program

6. Install and run RMI system

CSE Department, MJCET 18

Distributed System Lab Manual

Pseudocode for RMI: The interface is specified using an RMI remote interface for
DNS services:

public interface DNSInterface extends Remote {

// update()

//

// The parameters specify a new entry in the SDNS directory

//

public void update(String ipAddress, string domainName) throws RemoteException;

//request()

//

// The method returns the ip address corresponding to specified domain name

//

public string request(string domainName) throws RemoteException;

}

Implementation of SDNS Protocol You are to implement a client program and a
server program that realize the SDNS protocol. The protocol is to be implemented using
Java RMI. It may be helpful to refer to the RMI tutorial from the last lab.

SDNS Server The internal table that holds the (IP address, Domain Name) pairs can
be implemented very straightforwardly using a Hashmap object. The Domain names can
be used as keys to look up the stored IP addresses. The server should be registered in
the RMI Registry using the name ”sdns”.

SDNS Client The SDNS client program can be invoked with either one or two arguments
in the following format:
sdnslookup sdns server ip address domain name
sdnslookup sdns server domain name

sdns server this argument is the IP address of the SDNS server in decimal dot notation.

ip address this argument is an IP address in decimal dot notation, e.g. 137.94.10.30.

domain name this argument is a fully qualified domain name, e.g. www.rmc.ca.

Depending on how many arguments the client program is called with it will either attempt
to update the table in the SDNS server with a new (IP address, Domain Name) pair, or
to request the IP address for a given domain name.

Once you have your client and server working you should try using your programs in com-
bination with the SDNS programs of the other students. Provided you have implemented
in accordance with the specified SDNS protocol your programs should work together.

CSE Department, MJCET 19

Distributed System Lab Manual

OUTPUT

CSE Department, MJCET 20

