
 

MUFFAKHAM JAH COLLEGE OF 
ENGINEERING & TECHNOLOGY 

Banjara Hills Road No 3, Hyderabad- 34 
www.mjcollege.ac.in 

 

 
 

ELECTRICAL ENGINEERING DEPARTMENT 
 

LABORATORY MANUAL 
 

DIGITAL SIGNAL PROCESSING LAB 
 

 
 

For 
 

B.E VI- SEMESTER EEE/EIE AICTE/MC 
2021-22 

 
 

Prepared by 
 

Dr. Mohd. Abdul Muqeet 
           Assoc. Professor, EED 

 



Digital Signal Processing         Lab Manual  

1 

 
WITH EFFECT FROM THE ACADEMIC YEAR 2020-2021 

 
 

DSP LAB 
(COMMON TO EEE & EIE) 

 
Instruction        2 Periods per week 
Duration of University Examination    2 Hours 
University Examination  (SEE)    50 Marks 
Sessional     (CIE)   25 Marks 
 
 
PC463EE (EEE)  
PC507EE (EIE) 
 

1. Generation of different discrete signal sequences and Waveforms.  
2. Basic Operations On Discrete Time Signals  
3. DFT Computation and FFT Algorithms.  
4. Verification of Convolution Theorem.  
5. Verification of sampling theorem.  
6. Design of Butterworth and Chebyshev LP and HP filters.  
7. Design of LPF using Rectangular, Hamming and Kaiser Windows.  
8. To perform linear and circular convolution for the given sequences.  
9. Design and implementation of FIR and IIR filter.  
10. Computation of DFT using DIT and DIF algorithm. 
11.  Generation of basic waves. 
12.  Impulse response. 

 
At least ten experiments should be completed in the semester 

 
 
 
 
 
 
  



Digital Signal Processing         Lab Manual  

2 

 
Index 

Sr.No Name of Experiment/Description 
Page 
No. 

1 Waveform generation -Square, Triangular and 
Trapezoidal 

10 

2 Verification of Convolution Theorem-comparison 
Circular and Linear Convolutions. 

16 

3 Computation of DFT, IDFT using Direct and FFT 
methods 

21 

4 Verification of Sampling Theorem 
 

23 

5 Design of Butterworth and Chebyshev of LP & HP 
filters. 

26 

6 
Introduction to TMS320C6713 DSK[ Courtesy: Texas 
Instrument] 

42 

7 Design of LPF using rectangular and Hamming, Kaiser 
Windows 

34 

8 To verify Linear Convolution using TMS320C6713 
DSK 

71 

9 Generation of Sine wave and square wave using 
TMS320C6713 DSK and Code Composer Studio. 

75 

10 Computation of DFT and DIT FFT using TMS320C6713 
DSK and Code Composer Studio. 

79 

11 Generating the Responses of Low Pass and High Pass 
IIR filters using DSP Trainer Kit (TMS320C6713) 

85 

 
 
 
 
 

  



Digital Signal Processing         Lab Manual  

3 

 
 
 

Cycle –I  
 
[1]. Waveform generation -Square, Triangular and Trapezoidal. 
[2]. Verification of Convolution Theorem-comparison Circular and 

Linear Convolutions. 
[3]. Computation of DFT, IDFT using Direct and FFT methods. 
[4]. Verification of Sampling Theorem 
[5]. Design of Butterworth and Chebyshev of LP & HP filters. 
[6]. Design of LPF using rectangular and Hamming, Kaiser Windows. 
 
 

 
Cycle –II 

 
[7]. To verify Linear Convolution using TMS320C6713 DSK 
[8]. Generation of Sine wave and square wave using TMS320C6713 

DSK and Code Composer Studio. 
[9]. Computation of DFT and DIT FFT using TMS320C6713 DSK and 

Code Composer Studio. 
[10]. Generating the Responses of Low Pass and High Pass IIR filters 

using DSP Trainer Kit (TMS320C6713) 

 
 
 
 
 
 
 
 
 
 
 
 



Digital Signal Processing         Lab Manual  

4 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cycle-I 

 
 
 
 
 
 
 
 
 
 
 
 
 

  



Digital Signal Processing         Lab Manual  

5 

 
INTRODUCTION 

 
MATLAB, which stands for MATrix LABoratory, is a state-of-the-art 

mathematical software package for high performance numerical computation and 
visualization provides an interactive environment with hundreds of built in functions 
for technical computation, graphics and animation and is used extensively in both 
academia and industry. It is an interactive program for numerical computation and 
data visualization, which along with its programming capabilities provides a very 
useful tool for almost all areas of science and engineering.  

At its core ,MATLAB is essentially a set (a “toolbox”) of routines (called “m 
files” or “mex files”) that sit on your computer and a window that allows you to create 
new variables with names (e.g. voltage and time) and process those variables with any 
of those routines (e.g. plot voltage against time, find the largest voltage, etc).  
It also allows you to put a list of your processing requests together in a file and save 
that combined list with a name so that you can run all of those commands in the same 
order at some later time. Furthermore, it allows you to run such lists of commands 
such that you pass in data. 
 
MATLAB Windows: 
MATLAB works with through these basic windows 
 
Command Window  

This is the main window .it is characterized by MATLAB command prompt 
>> when you launch the application program MATLAB puts you in this window all 
commands including those for user-written programs ,are typed in this window at the 
MATLAB prompt  
 
The Current Directory Window 

The Current Directory window displays a current directory with a listing of its 
contents. There is navigation capability for resetting the current directory to any 
directory among those set in the path. This window is useful for finding the location 
of particular files and scripts so that they can be edited, moved, renamed, deleted, etc. 
The default current directory is the Work subdirectory of the original MATLAB 
installation directory 
 
The Command History Window 

The Command History window, at the lower left in the default desktop, 
contains a log of commands that have been executed within the Command window. 
This is a convenient feature for tracking when developing or debugging programs or 
to confirm that commands were executed in a particular sequence during a multistep 
calculation from the command line. 
 
Graphics Window 

The output of all graphics commands typed in the command window are 
flushed to the graphics or figure window, a separate gray window with white 
background color the user can create as many windows as the system memory will 
allow. 
 
Edit Window 

This is where you write edit, create and save your own programs in files called 
M files.  
 



Digital Signal Processing         Lab Manual  
 

 
 
 
Input-output 

MATLAB supports interactive computation taking the input from the screen 
and flushing, the output to the screen. In addition it can read input files and write 
output files  
 
Data Type 

The fundamental data –type in MATLAB is the array. It encompasses several 
distinct data objects- integers, real numbers, matrices, character strings, structures and 
cells. There is no need to declare variables as real or complex, MATLAB 
automatically sets the variable to be real.  
 
Dimensioning 

Dimensioning is automatic in MATLAB. No dimension statements are 
required for vectors or arrays .we can find the dimensions of an existing matrix or a 
vector with the size and length commands. 
 
 
Where to work in MATLAB? 
 All programs and commands can be entered either in the  
a) Command window  
b) As an M file using MATLAB editor  

Note: Save all M files in the folder 'work' in the current directory. Otherwise 
you have to locate the file during compiling.  
Typing quit in the command prompt>> quit, will close MATLAB Development 
Environment.  
For any clarification regarding plot etc, which are built in functions type help topic i.e. 
help plot 
 
Basic Instructions in MATLAB 
 

 

 

 

Current  

Wor

Co

 Com



Digital Signal Processing         Lab Manual  

7 

1. T = 0: 1:10 This instruction indicates a vector T which as initial value 0 and 
final value 10 with an increment of 1 Therefore  

T = [0 1 2 3 4 5 6 7 8 9 10] 
 

2. F= 20: 1: 100  
     F = [20 21 22 23 24 ……… 100] 
 

3. T= 0:1/ pi: 1  
           T= [0, 0.3183, 0.6366, 0.9549]  
 

4. zeros (1, 3) The above instruction creates a vector of one row and three 
columns whose values are zero Output= [0 0 0] 

 
5. Transpose a vector   
       Suppose T= [1 2 3],  
             Then transpose  

T’= 1 
            2  

  3 
   6. Empty vector 

Y = [] 
Y = 
    [] 

6. Matrix Operation 
 
a)If a = [ 1 2 3] b = [4 5 6]  

a.*b = [4 10 18]  
     b)If v = [0:2:8] 

v = [0 2 4 6 8] 
                  v(1:3) 

ans [0 2 4] 
       v(1:2:4) 

ans[ 0 4] 
     c) A = [1 2 3; 3 4 5; 6 7 8] 
         A = 

1 2 3 
3 4 5 
6 7 8 

                     A(2,3) 
  ans 5 

         A(1:2,2:3) 
             ans = 

2 3 
4 5 

         A(:,2) 
             ans = 

2 
4 
7 

        A(3,:) 
  ans = 

     6 7 8 
  



Digital Signal Processing         Lab Manual  
 
Operations on vector and matrices in MATLAB 
 

MATLAB utilizes the following arithmetic operators; 

 
+  Addition 
-  Subtraction 
*  Multiplication 
/  Division 
^  Power Operator 
‘  transpose 

 
Relational operators in MATLAB 

 
Control Flow in MATLAB 
 
1) Syntax of the for loop is shown below 

for k = array 
commands 
end 

The commands between  for and end statements are executed for all values         
stored in the array. 

2) Syntax for the if loop 
      if expression 

commands 
     end 

This construction is used if there is one alternative only.  
Two alternatives requires the following construction 

   if expression 
commands (evaluated if expression is true) 

   else 
commands (evaluated if expression is false) 

                  end 
   3) Syntax of the switch-case construction is 

switch expression (scalar or string) 
case value1 (executes if expression evaluates to value1) 

commands 
case value2 (executes if expression evaluates to value2) 

commands 
... 
otherwise 

statements 
 end 



Digital Signal Processing         Lab Manual  
  Switch compares the input expression to each case value. Once the match is   

found it executes the associated commands. 
 
Basic Functions in MATLAB 

1) Plot   Syntax:  plot (x,y) 
           Plots vector y versus vector x. If x or y is a matrix, then the vector is plotted     

versus the rows or columns of the matrix. 
 
     2)  Stem   Syntax: stem(Y) 

    Discrete sequence or "stem" plot. 
Stem (Y) plots the data sequence Y as stems from the x axis terminated with 
circles for the data value. If Y is a matrix then each column is plotted as a 
separate series. 
 

3) Subplot Syntax: Subplot (2 2 1) 
This function divides the figure window into rows and columns.  
Subplot (2 2 1) divides the figure window into 2 rows and 2 columns 1 
represent number of the figure. 

 
Subplot (3 1 2) divides the figure window into 3 rows and 1 column 2 
represent number of the figure 

 
    4) Disp Syntax: disp(X)  

Description: disp(X) displays an array, without printing the array name. If X 
contains a text string, the string is displayed.Another way to display an array 
on the screen is to type its name, but this prints a leading "X=," which is not 
always desirable.Note that disp does not display empty arrays.  

 
5) xlabel Syntax: xlabel('string') Description: xlabel('string') labels the x-axis 
of the current axes.  
 
6) ylabel Syntax : ylabel('string')  
Description: ylabel('string') labels the y-axis of the current axes. 

 
     7) Title Syntax : title('string')  

Description: title('string') outputs the string at the top and in the center of the 
current axes.  

    8) grid on Syntax : grid on  
      Description: grid on adds major grid lines to the current axes. 

 
 



Digital Signal Processing         Lab Manual  
Experiment – 1 

 
Aim :- To generate the waveform for the following signals using MATLAB. 
 

1) Sine Wave signal 
2) Cosine Wave signal 
3) Saw Tooth Wave signal 
4) Square Wave signal 
5) Triangular Wave signal 
6) Trapezoidal Wave signal 

 
Apparatus: Matlab Software, PC 
 
Algorithm:-  

1) Enter the number of cycles, period and amplitude for respective waves. 
2) Generate the signals using corresponding general formula.  
3) Plot the graph. 

 
Program: 
1)% To generate a sinusoidal signal 
clear all; 
close all;clc; 
N = input('enter the number of cycles....'); 
t = 0:0.05:N; 
x = sin(2*pi*t); 
subplot(121); 
plot(t,x); 
xlabel('---> time'); 
ylabel('---> amplitude'); 
title('analog sinusoidal signal'); 
subplot(122); 
stem(t,x); 
xlabel('---> time'); 
ylabel('---> amplitude'); 
title('discrete sinusoidal signal'); 
 
Results: 
enter the number of cycles....3 
 

 
 
2)% To generate a Cosine Wave signal 



Digital Signal Processing         Lab Manual  
 
clear all; 
close all; 
clc; 
N = input('enter the number of cycles....'); 
t = 0:0.05:N; 
x = cos(2*pi*t); 
subplot(121); 
plot(t,x); 
xlabel('---> time'); 
ylabel('---> amplitude'); 
title('analog cosine signal'); 
subplot(122); 
stem(t,x); 
xlabel('---> time'); 
ylabel('---> amplitude'); 
title('discrete cosine signal'); 
  
Results: 
enter the number of cycles....3 
 

 
3) % To generate a triangular signal 
clc; 
clear all; 
close all; 
N = input('enter the number of cycles....'); 
M = input('enter the amplitude....'); 
t1 = 0:0.5:M; 
t2 = M:-0.5:0; 
t = []; 
for i = 1:N, 
    t = [t,t1,t2]; 
end; 
subplot(211); 
plot(t); grid on; 
xlabel('---> time'); 
ylabel('---> amplitude'); 



Digital Signal Processing         Lab Manual  
title('analog triangular signal'); 
subplot(212); 
stem(t); grid on; 
xlabel('---> time'); 
ylabel('---> amplitude'); 
title('discrete triangular signal'); 
 
Results: 
enter the number of cycles....3 
enter the amplitude....4 
 

 
 
4) % To generate a saw tooth signal 
clear all; 
close all; 
clc; 
N = input('enter the number of cycles....'); 
t1 = 0:25; 
t = []; 
for i = 1:N, 
    t = [t,t1]; 
end; 
subplot(211); 
plot(t); grid on; 
xlabel('---> time'); 
ylabel('---> amplitude'); 
title('analog saw tooth signal'); 
subplot(212); 
stem(t); grid on; 
xlabel('---> time'); 
 
ylabel('---> amplitude'); 
title('discrete saw tooth signal'); 
 



Digital Signal Processing         Lab Manual  
 
Results: 
enter the number of cycles....3 
 
 

 
 
5)% To generate a square signal 
clear all; 
close all; clc; 
N = input('enter the number of cycles....'); 
M = input('enter the period....'); 
y = 0:0.001:2; 
for j = 0:M/2:M*N; 
    x = y; 
    plot(j,x,'k'); grid on; 
    hold on; 
end; 
for k = 0:M:M*N; 
    x = k+y; 
    m = 2; 
    plot(x, m, 'k'); grid on; 
    hold on; 
end; 
for k =2:M:M*N; 
    x = k+y; 
    m =0; 
    plot(x, m, 'k'); grid on; 
    hold on; 
end; 
 
hold off; 
axis([0 12 -0.5 2.5]) 
xlabel('---> time'); 



Digital Signal Processing         Lab Manual  
 
ylabel('---> amplitude'); 
title('Square signal'); 
 
Results: 
enter the number of cycles....4 
enter the period....4 
 
 

 
5)% To generate a Trapezoidal signal 
 
clear all; 
close all; 
clc; 
N = input('enter the number of cycles....'); 
LN=1; 
x=0:0.1:LN; % 'x' is meant for linear rise % 
a=length(x); 
y=ones(1,a+10); % 'y' is meant for constancy % 
z=LN:-0.1:0; % 'z' is meant for linear fall  % 
y3=[x y z ]; 
%y4=[y3 y3 y3 y3]; 
y4=[]; 
for i = 1:N, 
    y4=[y4,y3]; 
end; 
subplot(211); 
plot(y4); grid on; 
xlabel('---> time'); 
ylabel('---> amplitude'); 
title('analog trapezoidal signal'); 
subplot(212); 
stem(y4); grid on; 
 
xlabel('---> time'); 
ylabel('---> amplitude'); 
 



Digital Signal Processing         Lab Manual  
title('discrete trapezoidal signal'); 
 
 
Results: 
enter the number of cycles....3 
 

 
 

Discussions on results: 
Thus different waveforms have been generated in Matlab and plotted with respect to 
time.  
 
By performing the experimentation the student will be to  
  

1. Discuss the effect of change in number of cycles on waveform. 
2. Discuss the effect of change in time duration on the waveform 
3. Discuss the application and significance of each waveform in digital signal 

processing. 
 
 
 

  



Digital Signal Processing         Lab Manual  
 
Experiment – 2 
 

Aim: Write a Matlab program to verify Convolution Theorem-comparison Circular 
and Linear Convolutions. 
 
a) Write a Matlab program to implement and verify Linear Convolution. 
 
Apparatus: Matlab Software, PC 
 
Theory: 
 
The mathematical definition of convolution in discrete time domain 

 
where x[n] is input signal, h[n] is impulse response, and y[n] is output. * denotes 
convolution. Here we multiply the terms of x[k] by the terms of a time-shifted h[n] 
and add them up. 
In this equation, x(k), h(n-k) and y(n) represent the input to and output from the 
system at time n. Here one of the input is shifted in time by a value every time it is 
multiplied with the other input signal. Linear Convolution is quite often used as a 
method of implementing filters of various types. 
 
Algorithm: 

1) Give input sequence x[n]. 
2) Give impulse response sequence h[n]. 
3) Find the convolution y[n] using the matlab command CONV. 
4) Plot x[n],h[n],y[n]. 

 
Program: 
 
% MATLAB program for linear convolution 
clc; 
clear all; 
close all; 
disp('linear convolution program'); 
x=input('enter i/p x(n):'); 
m=length(x); 
h=input('enter i/p h(n):'); 
n=length(h); 
x=[x,zeros(1,n)]; 
subplot(2,2,1), stem(x); 
title('i/p sequence x(n)is:'); 
xlabel('---->n'); 
ylabel('---->amplitude');grid; 
h=[h,zeros(1,m)]; 
subplot(2,2,2), stem(h); 
title('i/p sequence h(n)is:'); 
xlabel('---->n'); 
ylabel('---->amplitude');grid; 
disp('convolution of x(n) & h(n) is y(n):'); 
y=zeros(1,m+n-1); 
for i=1:m+n-1 



Digital Signal Processing         Lab Manual  
 
y(i)=0; 
 
for j=1:m+n-1 
if(j<i+1) 

y(i)=y(i)+x(j)*h(i-j+1); 
end 
end 
end 
y 
subplot(2,2,[3,4]),stem(y); 
title('convolution of x(n) & h(n) is y(n):'); 
xlabel('---->n'); 
ylabel('---->amplitude');grid; 
 
Results: 
linear convolution program 
enter i/p x(n):[1 2 3 4 5] 
enter i/p h(n):[ 1 2] 
convolution of x(n) & h(n) is y(n): 
 
y = 
 
     1     4     7    10    13    10 
 
 
 

 
 
 
 
 



Digital Signal Processing         Lab Manual  

18 

 
b) Write a Matlab program to implement and verify Circular convolution of two 
given sequences. 
 
Apparatus: Matlab Software, PC 
 
Theory: 

Circular convolution is another way of finding the convolution sum of two 
input signals. It resembles the linear convolution, except that the sample values of one 
of the input signals is folded and right shifted before the convolution sum is found. 
Also note that circular convolution could also be found by taking the DFT of the two 
input signals and finding the product of the two frequency domain signals. The 
Inverse DFT of the product would give the output of the signal in the time domain 
which is the circular convolution output. The two input signals could have been of 
varying sample lengths. But we take the DFT of higher point, which ever signals 
levels to. For eg. If one of the signal is of length 256 and the other spans 51 samples, 
then we could only take 256 point DFT. So the output of IDFT would be containing 
256 samples instead of 306 samples, which follows N1+N2 – 1 where N1 & N2 are 
the lengths 256 and 51 respectively of the two inputs. Thus the output which should 
have been 306 samples long is fitted into 256 samples. The 256 points end up being a 
distorted version of the correct signal. This process is called circular convolution. 
Circular convolution is explained using the following example. 
The two sequences are 

x1 (n) = {2,1,2,1} 

x2 (n) = {1,2,3,4 } 
 
Each sequence consists of four nonzero points. For purpose of illustrating the 

operations involved in circular convolution it is desirable to graph each sequence as 
points on a circle. Thus the sequences x1 (n) and x2 (n) are graphed as illustrated in 
the fig.We note that the sequences are  graphed in a counterclockwise direction on a 
circle.This  stablishes the reference direction in rotating one of sequences relative to 
the other. Now, y (m) is obtained by circularly convolving x (n) with h (n). 
 
Algorithm: 
 

1) Give input sequence x[n]. 
2) Give impulse response sequence h[n]. 
3) Find the Circular Convolution y[n] using the DFT method. 
4) Plot x[n],h[n],y[n]. 

 
 
  



Digital Signal Processing         Lab Manual  
 

 
 
 
Program: 
clc; 
clear all; 
close all; 
disp(‘Circular convolution program'); 
x=input('enter i/p x(n):'); 
m=length(x); 
h=input('enter i/p h(n):'); 
n=length(h); 
subplot(2,2,1), stem(x); 
title('i/p sequence x(n)is:'); 
xlabel('---->n'); 
ylabel('---->amplitude');grid; 
subplot(2,2,2), stem(h); 
title('i/p sequence h(n)is:'); 
xlabel('---->n'); 
ylabel('---->amplitude');grid; 
disp('circular convolution of x(n) & h(n) is y(n):'); 
y1=fft(x,n); 
y2=fft(h,n); 
y3=y1.*y2; 



Digital Signal Processing         Lab Manual  
 
y=ifft(y3,n); 
y 
subplot(2,2,[3,4]),stem(y); 
title('circular convolution of x(n) & h(n) is y(n):'); 
xlabel('---->n'); 
ylabel('---->amplitude');grid; 
 
 
Result: 
Circular convolution program 
enter i/p x(n):[1 2 3 4] 
enter i/p h(n):[4 3 2 1] 
circular convolution of x(n) & h(n) is y(n): 
 
y = 
 
    24    22    24    30 
 
 
 

 
Discussions on results: 
 
Thus the Linear convolution and circular convolution for discrete time signals are 
obtained mathematically and graphically .Through this experiment student will be 
able to  

1) Discuss the effect on results if zero padding is used in the program. 
2) Discuss the effect on results if zero padding is not used in the program. 
3) Discuss the results in obtaining the circular convolution without using 

frequency domain technique. 
4) Discuss the difference between linear convolution and circular convolution. 

 



Digital Signal Processing         Lab Manual  
Experiment – 3 

 
Aim: Write a Matlab program for computation of DFT and IDFT using Direct and 
FFT method. 
 
Apparatus: Matlab Software, PC 
 
Theory: 
DFT: 

Discrete Fourier Transform (DFT) is used for performing frequency analysis of 
discrete time signals. DFT gives a discrete frequency domain representation whereas the 
other transforms are continuous in frequency domain. The N point DFT of discrete time 
signal x[n] is given by the equation 

 
The inverse DFT allows us to recover the sequence x[n] from the frequency samples 
 

 
FFT: 

A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete 
Fourier transform (DFT) and its inverse. FFTs are of great importance to a wide variety of 
applications, from digital signal processing and solving partial differential equations to 
algorithms for quick multiplication of large integers. Evaluating the sums of DFT directly 
would take O(N 2) arithmetical operations. An FFT is an algorithm to compute the same 
result in only O(N log N) operations. In general, such algorithms depend upon the 
factorization of N, but there are FFTs with O(N log N) complexity for all N, even for 
prime N. Since the inverse DFT is the same as the DFT, but with the opposite sign in the 
exponent and a 1/N factor, any FFT algorithm can easily be adapted for it as well. 
 
Algorithm: 
  
1) Get the input sequence  
2) Find the DFT of the input sequence using direct equation of DFT. 
3) Find the IDFT using the direct equation. 
4) Find the FFT of the input sequence using MATLAB function.  
5) Find the IFFT of the input sequence using MATLAB function.  
4) Display the above outputs using stem function. 
 
Program: 
%********** Direct DFT *********** 
clc;close all;clear all; 
xn=input('enter 8 inputs'); 
N=length(xn); 
n=0:N-1; 
k=0:N-1; 
wn=exp((-1i*2*pi*n'*k)/N); 
xf=wn*xn'; 
subplot(2,2,1); 
stem(abs(xf)); 
title('dft magnitude respone'); 
ylabel('magnitude'); 
xlabel('frequncy'); 
% ******* Direct IDFT ********** 



Digital Signal Processing         Lab Manual  
 
WN=exp((1i*2*pi*n'*k)/N); 
pn=WN*xf/N; 
subplot(2,2,2); 
stem(abs(pn)); 
title('idft magnitude respone'); 
ylabel('magnitude'); 
xlabel('time'); 
%******* FFT Method********** 
xp=fft(xn,N); 
subplot(2,2,3); 
stem(abs(xp)); 
title('fft magnitude respone'); 
ylabel('magnitude'); 
xlabel('frequncy'); 
%******** IFFT method ********* 
xw=ifft(xp,N); 
subplot(2,2,4); 
stem(abs(xw)); 
title('ifft magnitude respone'); 
ylabel('magnitude'); 
xlabel('time'); 
 
Results: 
enter 8 inputs[1 2 3 4 5 6 7 8] 
 

 
Discussions on results:  
Thus from the results students will be able to 

1. Discuss that the Fourier transform of a discrete time signal is also called as 
Signal Spectrum. 

2. Discuss the changes in the results due to more number of inputs in the given 
sequences in finding the DFT and FFT. 

3. Discuss that FFT performs faster and take less computational time compared 
to DFT. 

  



Digital Signal Processing         Lab Manual  

23 

Experiment – 4 
 

Aim: Write a Matlab program to verify Sampling Theorem 
 
Apparatus: Matlab Software, PC 
 
Theory: 
 
Sampling Theorem: The sampling theorem, attributed to Nyquist, Shannon, 
Kotelnikov and Whittaker, is useful when calculating the sampling frequency required 
for use in the Analog-to-Digital converter.  
The theorem states that a band limited signal can be reconstructed exactly if it is 
sampled at a rate at least twice the maximum frequency component in it. 
The maximum frequency component of g(t) is fm. To recover the signal g(t) exactly 
from its samples it has to be sampled at a rate fs=2fm. The minimum required 
sampling rate fs = 2fm is called Nyquist rate. 
Sampling is also a process of converting a continuous time signal (analog signal) x(t) 
into a  d i sc re te  t ime  s igna l  x[n ] , which  i s  r ep resented  as  a  seque nce 
of  numbers .  (A/D Converter) 
Converting back x[n] into analog (resulting in) x(t) is the process of 
reconstruction.(D/A Converter) 
 
Algorithm:  
 

1) Input the desired frequency mf  (for which sampling theorem is to be verified) 

2) Generate the cosine wave, i.e a continuous-time signal given mathematically 
as, ( ) cos(2 )mx t f t  where f represents the frequency and t the time. 

3) Generate the discrete-time signals for Undersampling, Nyquist sampling 
andoversampling conditions.  
oversampled & under sampled conditions after sampling at instants n1, n2, 
n3 which are given as, ,. 

a. To do this for under sampling, choose sampling frequency 
fs1<2*fm.For this sampling rate T1=1/fs1,  

b. For Nyquist Sampling, choose sampling frequency fs2=2*fm.For 
this sampling rate T2=1/fs2. 

c. For Over Sampling, choose sampling frequency fs2>fd. 
4) Plot the waveforms and hence prove sampling theorem. 

 
Program: 
 
clc; 
clear all; 
%define analog signal for comparison 
t=-100:01:100; 
fm=0.02; 
x=cos(2*pi*t*fm); 
subplot(2,2,1); 
plot(t,x); 
xlabel('time in sec'); 
ylabel('x(t)'); 
title('continuous time signal'); 
 



Digital Signal Processing         Lab Manual  

24 

 
%simulate condition for undersamplingi.e.,fs1<2*fm 
fs1=0.02; 
n=-2:2; 
x1=cos(2*pi*fm*n/fs1); 
subplot(2,2,2); 
stem(n,x1); 
hold on 
subplot(2,2,2); 
plot(n,x1,':'); 
title('discrete time signal x(n) with fs<2fm'); 
xlabel('n'); 
ylabel('x(n)'); 
%condition for Nyquist plot 
fs2=0.04; 
n1=-4:4; 
x2=cos(2*pi*fm*n1/fs2); 
subplot(2,2,3); 
stem(n1,x2); 
hold on 
subplot(2,2,3); 
plot(n1,x2,':'); 
title('discrete time signal x(n) with fs>2fm'); 
xlabel('n'); 
ylabel('x(n)'); 
%condition for oversampling 
n2=-50:50; 
fs3=0.5; 
x3=cos(2*pi*fm*n2/fs3); 
subplot(2,2,4); 
stem(n2,x3); 
hold on 
subplot(2,2,4); 
plot(n2,x3,':'); 
xlabel('n'); 
ylabel('x(n)'); 
title('discrete time signal x(n) with fs=2fm'); 
 
Results: 



Digital Signal Processing         Lab Manual  

 
 
 
Discussions on Results: 
 
This experiment verifies the sampling theorem in Matlab for undersampling, Nyquist 
sampling and oversampling.  
 
Thus from the results students will be able to 
 

1) Discuss the effect of undersampling for the given signal 
2) Discuss the effect of Nyquist sampling for the given signal 
3) Discuss the effect of oversampling for the given signal. 

 
 
 
 
 
 
 
 
 

  



Digital Signal Processing         Lab Manual  

26 

Experiment – 5 
 
Aim: -To Design and generate IIR Butterworth/ Chebyshev LP/HP Filter using 
MATLAB  
 
Apparatus Required: - MATLAB Software, PC 
 
Theory: 

The Digital Filter Design problem involves the determination of a set of filter 
coefficients to meet a set of design specifications. These specifications typically 
consist of the width of the passband and the corresponding gain, the width of the 
stopband(s) and the attenuation therein; the band edge frequencies (which give an 
indication of the transition band) and the peak ripple tolerable in the passband and 
stopband(s). 

The design of IIR filters is closely related to the design of analog filters, which 
is a widely studied topic. An analog filter is usually designed and a transformation is 
carried out into the digital domain. Two transformations exist – the impulse invariant 
transformation and the bilinear transformation. 
 
Analog to Digital Domain Mapping Techniques 

Digital Filters are designed by using the values of both the past outputs and the 
present input, an operation brought about by convolution. If such a filter is subjected 
to an impulse then its output need not necessarily become zero. The impulse response 
of such a filter can be infinite in duration. Such a filter is called an Infinite Impulse 
Response filter or IIR filter. The infinite impulse response of such a filter implies the 
ability of the filter to have an infinite impulse response. This indicates that the system 
is prone to feedback and instability. 
The experiment studies two different types of IIR filters Butterworth Filter, and 
Chebyschev I type Filters. 
IIR filters are designed essentially by the Impulse Invariance or the Bilinear 
Transformation method. 
 
1) Impulse Invariance 

This procedure involves choosing the response of the digital filter as an equi-
spaced sampled version of the analog filter. 

1. Decide upon the desired frequency response 
2. Design an appropriate analogue filter 
3. Calculate the impulse response of this analogue filter 
4. Sample the analogue filter's impulse response 
5. Use the result as the filter coefficients 

 
2) Bilinear Transformation: 

The Bilinear Transformation method overcomes the effect of aliasing that is 
caused to due the analog frequency response containing components at or beyond the 
Nyquist Frequency. The bilinear transform is a method of compressing the infinite, 
straight analogue frequency axis to a finite one long enough to wrap around the unit 
circle once only. This is also sometimes called frequency warping. This introduces a 
distortion in the frequency. This is undone by pre-warping the critical frequencies of 
the analog filter (cut-off frequency, center frequency) such that when the analog filter 
is transformed into the digital filter, the designed digital filter will meet the desired 
specifications. 
 
 



Digital Signal Processing         Lab Manual  

27 

 
Filter Types 
 
Butterworth Filters 

Butterworth filters are causal in nature and of various orders, the lowest order 
being the best (shortest) in the time domain, and the higher orders being better in the 
frequency domain. Butterworth or maximally flat filters have a monotonic amplitude 
frequency response which is maximally flat at zero frequency response and the 
amplitude frequency response decreases logarithmically with increasing frequency.  
A Butterworth filter is characterized by its magnitude frequency response, 

1

2
2

1
| ( ) |

1 ( ) N

c

H j 
 
  

 

Where N is the order of the filter and Ωc is defined as the cutoff frequency where the 
filter magnitude is 1/√2 times the dc gain (Ω=0). 
 
Chebyshev Filters 

Chebyshev filters are equiripple in either the passband or stopband. Hence the 
magnitude response oscillates between the permitted minimum and maximum values 
in the band a number of times depending upon the order of filters. There are two types 
of chebyshev filters. The chebyshev I filter is equiripple in passband and monotonic in 
the stopband, where as chebyshev II is just the opposite.  
The Chebyshev low-pass filter has a magnitude response given by 

 
1

2 2 2| | 1 ( )N
c

H j T


 
    

 

where є is a parameter related to the ripple present in the passband 
TN(x) is given by  

 
1

1

cos( cos ) | | 1,

cos( cosh ) | | 1,
N

N x for x passband
C x

N x for x stopband





    
    

The magnitude response has equiripple pass band and maximally flat stop band. By 
increasing the filter order N, the Chebyshev response approximates the ideal response.  
The phase response of the Chebyshev filter is more non-linear than the Butter worth 
filter for a given filter length N.  
 
Algorithm: 
 
1) Enter the pass band ripple (rp) and stop band ripple (rs).  
2) Enter the pass band frequency (wp) and stop band frequency (ws).  
3) Get the sampling frequency (fs).  
4) Calculate normalized pass band frequency, and normalized stop band frequency w1 
and w2 respectively. 

           w1 = 2 * wp /fs  
           w2 = 2 * ws /fs  

5)  Make use of the following function to calculate order of filter 
Butterworth filter order 

                       [n,wn]=buttord(w1,w2,rp,rs)  
             
 

 



Digital Signal Processing         Lab Manual  

28 

 
Chebyshev filter order 

                     [n,wn]=cheb1ord(w1,w2,rp,rs) 
6) Design an nth order digital lowpass Butterworth or Chebyshev filter using the 
following statements. 

Butterworth filter  
[b, a]=butter (n, wn)  

           Chebyshev filter 
                       [b,a]=cheby1(n,0.5,wn) 
   OR 
Design an nth order digital high pass Butterworth or Chebyshev filter using the 
following statement. 

Butterworth filter  
  [b,a]=butter (n, wn,’high’) 
 Chebyshev filter 

 [b,a]=cheby1 (n, 0.5, wn,'high') 
 
7) Find the  digital frequency response of the filter by using ‘freqz( )’ function 

[H,w]=freqz(b,a,512,fs) 
8) Calculate the magnitude of the frequency response in decibels (dB) 
                       mag=20*log10 (abs (H)) 
9) Plot the magnitude response [magnitude in dB Vs normalized frequency (Hz]]  
10) Calculate the phase response using an = angle (H)  
11) Plot the phase response [phase in radians Vs normalized frequency (Hz)]. 
 

Program: 

% IIR filters  
clc; clear all; close all;  
warning off;  
disp('enter the IIR filter design specifications');  
rp=input('enter the passband ripple');  
rs=input('enter the stopband ripple');  
wp=input('enter the passband freq');  
ws=input('enter the stopband freq');  
fs=input('enter the sampling freq');  
w1=2*wp/fs;%normalized pass band frequency 
w2=2*ws/fs;%normalized stop band frequency 
[n,wn]=buttord(w1,w2,rp,rs);% Find the order n and cut- 
off frequency  
ch=input('give type of filter 1:LPF,2:HPF'); 
switch ch 
case 1 
 disp('Frequency response of Butterworth IIR LPF is:'); 
 [b,a]=butter(n,wn); % Find the filter coefficient of LPF  
 [H,w]=freqz(b,a,512,fs);% to get the transfer function 
of the filter 
 mag=20*log10(abs(H)); 
 phase=angle(H); 
 subplot(211); 
 plot(w,mag);grid on; 
 ylabel('--> Magnitude in dB'); 
 xlabel('--> Normalized frequency in Hz'); 
  



Digital Signal Processing         Lab Manual  

29 

 
title('Magnitude Response of the desired Butterworh 
LPF'); 
  
subplot(212); 
  
plot(w,phase);grid on; 
 ylabel('--> Phase in radians'); 
 xlabel('--> Normalized frequency in Hz'); 
 title('Phase Response of the desired Butterworh LPF'); 
case 2 
 disp('Frequency response of IIR Butterworth HPF is:'); 
 [b,a]=butter(n,wn,'high'); % Find the filter co-
efficients of HPF  
 [H,w]=freqz(b,a,512,fs);% to get the transfer function 
of the filter 
 mag=20*log10(abs(H)); 
 phase=angle(H); 
 subplot(211); 
 plot(w,mag);grid on; 
 ylabel('--> Magnitude in dB'); 
 xlabel('--> Normalized frequency in Hz'); 
 title('Magnitude Response of the desired Butterworh 
HPF'); 
 subplot(212); 
 plot(w,phase);grid on; 
 ylabel('--> Phase in radians'); 
 xlabel('--> Normalized frequency in Hz'); 
 title('Phase Response of the desired Butterworh HPF'); 
end 
 
Results: 

enter the IIR filter design specifications 
enter the passband ripple   0.15 
enter the stopband ripple    60 
enter the passband freq     1500 
enter the stopband freq     3000 
enter the sampling freq     7000 
give type of filter 1:LPF,2:HPF  
1 
Frequency response of Butterworth IIR LPF is: 
 



Digital Signal Processing         Lab Manual  

 

 
IIR HIGH PASS FILTER 

 
enter the IIR filter design specifications 
enter the passband ripple   0.15 
enter the stopband ripple    60 
enter the passband freq     1500 
enter the stopband freq     3000 
enter the sampling freq     7000 
give type of filter 1:LPF,2:HPF 
2 
Frequency response of Butterworth IIR HPF is: 
 
 

 
 



Digital Signal Processing         Lab Manual  

31 

 
 
%To design a Chebyshev (Type-I) Low/High Pass Filter for the 
given specifications 
clc; clear all; close all;  
disp('enter the IIR filter design specifications');  
rp=input('enter the passband ripple');  
rs=input('enter the stopband ripple');  
wp=input('enter the passband freq');  
ws=input('enter the stopband freq');  
fs=input('enter the sampling freq'); 
  
w1=2*wp/fs;%to get normalized pass band frequency 
w2=2*ws/fs;% to get normalized stop band frequency 
  
ch=input('give type of filter 1:LPF,2:HPF'); 
 % to get the order and cut-off frequency of the filter 
[n,wn]=cheb1ord(w1,w2,rp,rs); 
switch ch 
 case 1 
   
disp('Frequency response of Chebyshev IIR LPF is:'); 
  [b,a]=cheby1(n,0.5,wn);% to get the filter coefficients 
  % to get the transfer function of the filter 
  [H,w]=freqz(b,a,512,fs); 
  mag=20*log10(abs(H)); 
  phase=angle(H); 
  subplot(211); 
  plot(w,mag);grid on; 
  ylabel('--> Magnitude in dB'); 
  xlabel('--> Normalized frequency in Hz'); 
  title('Magnitude Response of the desired Chebyshev Type -I) 
LPF'); 
  subplot(212); 
  plot(w,phase);grid on; 
  ylabel('--> Phase in radians'); 
  xlabel('--> Normalized frequency in Hz'); 
  title('Phase Response of the desired Chebyshev(Type-I)LPF'); 
 case 2 
  disp('Frequency response of Chebyshev IIR HPF is:'); 
  % to get the filter coefficients 
  [b,a]=cheby1(n,0.5,wn,'high'); 
  % to get the transfer function of the filter 
  [H,w]=freqz(b,a,512,fs); 
  mag=20*log10(abs(H)); 
  phase=angle(H); 
  subplot(211); 
  plot(w,mag);grid on; 
  ylabel('--> Magnitude in dB'); 
  xlabel('--> Normalized frequency in Hz'); 
  title('Magnitude Response of the desired Chebyshev(Type-
I)HPF'); 
  subplot(212); 
  plot(w,phase);grid on; 
  ylabel('--> Phase in radians'); 
 
  xlabel('--> Normalized frequency in Hz'); 
  title('Phase Response of the desired Chebyshev(Type-I)HPF'); 
end 



Digital Signal Processing         Lab Manual  
 
 
Results: 
enter the IIR filter design specifications 
enter the passband ripple 0.15 
enter the stopband ripple 60 
enter the passband freq  1500 
enter the stopband freq  3000 
enter the sampling freq  7000 
give type of filter 1:LPF,2:HPF 
1 
 
Frequency response of Chebyshev IIR LPF is: 
 

 
 

High Pass Filter 
Result: 
enter the IIR filter design specifications 
enter the passband ripple 0.15 
enter the stopband ripple 60 
enter the passband freq  1500 
enter the stopband freq  3000 
enter the sampling freq  7000 
give type of filter 1:LPF,2:HPF 
2 
Frequency response of Chebyshev IIR HPF is: 
 
 



Digital Signal Processing         Lab Manual  

        
 
 
 
Discussions on results: 
 
By this experiment we have studied the LP/HP IIR digital filter designing.  
 
From the obtained results the students will be able to  
 

1) Discuss the effect of order of the filer on magnitude response. 
2) Discuss the effect of variation in pass band ripple, stop band ripple, pass band 

frequency, stop band frequency and sampling frequency respectively in 
designing the IIR Butterworth digital filter. 

3) Discuss the effect of variation in pass band ripple, stop band ripple, pass band 
frequency, stop band frequency and sampling frequency respectively in 
designing the IIR Chebyshev digital filter. 

 
  



Digital Signal Processing         Lab Manual  

34 

Experiment – 6 
 
Aim: - Design and implementation of FIR Filter (LP/HP) to meet given specifications 
Using Windowing technique  

a. Rectangular window 
b. Hamming window 
c. Kaiser window 

 
Apparatus: Matlab Software, PC 
 
Theory: 

A linear-phase is required throughout the passband of the filter to preserve the 
shape of the given signal in the passband. A causal IIR filter cannot give linear-phase 
characteristics and only special types of FIR filters that exhibit center symmetry in its 
impulse response give the linear-space. A Finite Impulse Response (FIR) filter is a 
discrete linear time-invariant system whose output is based on the weighted 
summation of a finite number of past inputs. 
A zero-phase frequency response of an ideal filter is given as 
 

1, ,
( )

0, .
cj

LP

c

H e   

  

  
 

 

 
Hence time domain impulse response is 
 

  sin( )1
[ ] ..

2
j j k c

d d
c

k
h k H e e d

k


 



 
 

    

 
so the impulse response is doubly infinite, not absolutely summable, and therefore 
unrealizable. 
By setting all impulse response coefficient outside the range   
equal to zero, we arrival at a finite-length noncausal approximation of length  
which when shifted to the right yield the coefficients of a causal FIR lowpass filter: 
 
 

 
 
 
Gibbs phenomenon 
The causal FIR filter obtained by simply truncating the impulse response coefficients 
of the ideal filters exhibit an oscillatory behavior in their respective magnitude 
responses which is more commonly referred to as the Gibbs phenomenon 
Cause of Gibbs phenomenon: 
The FIR filter obtained by truncation can be expressed as  
 
 

( )1
( ) ( ) ( )

2
j j j

dH e H e e d
   


 





   

The window used to achieve simple truncation of the ideal filter is rectangular 
window 
 
 

M n M  
2 1N M 

 
sin( ( ))

( ) ,0 1

0,

c

LP

n M

n Mh n n N

otherwise





    


[ ] [ ] [ ]dh n h n n 

1,0
[ ]

0,
R

n M
w n

otherwise

   




Digital Signal Processing         Lab Manual  

35 

 
Thus by applying windowing functions we can obtain FIR filters. 
Available Fixed window functions Rectangular, Bartlett, Hamming, Hanning, 
Blackmann etc. 
Hamming window function 

 
 
 

In Adjustable Window Functions, windows have been developed that provide control 
over ripple by means of an additional parameter. 
Like Kaiser Window 
 
 
 
 
Where   is an adjustable parameter and 0 ( )I    is a zero order Bessel function 

To design a FIR filter order of the filter should be specified or can be calculated from 
the following equation 

 
 

1020 log 13

14.6 2

p s

s p

r r
N

w w 

 



 

rp=passband ripple, rs=stopband ripple, wp=passband frequency 
ws=stopband frequency 
Then from order of the filter we can find the length by which a window function can 
be applied. 
 
Algorithm: 
 
FIR Low Pass Filter design 
 

1) Enter the pass band ripple (rp) and stop band ripple (rs). 
2) Enter the pass band frequency (wp) and stop band frequency (ws).  
3) Get the sampling frequency (fs), beta value for Kaiser window. 
4) Calculate the analog pass band edge frequencies, w1 and w2.  

i. w1 = 2*wp/fs  
ii. w2 = 2*ws/fs  

5) Calculate the order of the filter using the order equation. 
6) Use switch condition and ask the user to choose either Rectangular Window or  

Hamming window or Kaiser window. 
 

7) Use rectwin, hamming, Kaiser Commands  
Command fir1 uses the window  method of FIR filter design, If w(n) 
denotes a window, where 1 ≤ n ≤ N, and the impulse response of the ideal 
filter is h(n), where hd(n) is the inverse Fourier transform of the ideal 
frequency response. 
 

8) Calculate the digital frequency response using the command ‘freqz()’ 
9) Calculate the magnitude of the frequency response in decibels  

m=20*log10 (abs(h))  
10) Plot the magnitude response [magnitude in dB Vs normalized frequency 

(om/pi)]  
 
 

2
[ ] 0.54 0.46cos( ),

2 1

n
w n M n M

M


    



  
 

2
0

0

1 /
[ ] ,

I n M
w n M n M

I






   

[ ] [ ] [ ]dh n h n n 



Digital Signal Processing         Lab Manual  

36 

 
Program: 
 
%FIR Low Pass/High pass filter design using 
Rectangular/Hamming/Kaiser window 
clc; clear all; close all;  
rp=input('enter passband ripple');  
rs=input('enter the stopband ripple');  
wp=input('enter passband freq');  
ws=input('enter stopband freq');  
fs=input('enter sampling freq ');  
beta=input('enter beta value');  
w1=2*wp/fs;  
w2=2*ws/fs;  
num=-20*log10(sqrt(rp*rs))-13;  
dem=14.6*(ws-wp)/fs;  
n=ceil(num/dem);  
n1=n+1;  
if(rem(n,2)~=0)  
    n1=n; n=n-1;  
end 
c=input('enter your choice of window function 1. rectangular 
2. Hamming 3.kaiser: \n ');  
if(c==1)  
    y=rectwin(n1);  
    disp('Rectangular window filter response');  
end 
if (c==2)  
    y=hamming(n1);  
    disp('Hamming window filter response');  
end 
if(c==3)  
    y=kaiser(n1,beta);  
    disp('kaiser window filter response'); 
end 
  
ch=input('give type of filter 1:LPF,2:HPF'); 
switch ch 
    case 1 
      b=fir1(n,w1,y); 
      [h,o]=freqz(b,1,256);  
      m=20*log10(abs(h)); 
      plot(o/pi,m);  
      title('LPF'); 
      xlabel('(a) Normalized frequency-->'); 
      ylabel('Gain in dB-->');  
       
    case 2 
      b=fir1(n,w1,'high',y);  
      [h,o]=freqz(b,1,256);  
      m=20*log10(abs(h)); 
      plot(o/pi,m);  
      title('HPF');  
      xlabel('(b) Normalized frequency-->');   
      ylabel('Gain in dB-->');  
end    
 
 
Results: 



Digital Signal Processing         Lab Manual  
 
enter passband ripple         0.02 
enter the stopband ripple     0.01 
enter passband freq           1000 
enter stopband freq           1500 
enter sampling freq           10000 
enter beta value                 5 
enter your choice of window function 1. rectangular 2. 
Hamming 3.kaiser:  
 1 
Rectangular window filter response 
give type of filter 1:LPF,2:HPF 
1:LPF 

Low pass FIR filter using Rectangular Window 

 
 
enter your choice of window function 1. rectangular 2. 
Hamming 3.kaiser:  
 2 
Hamming window filter response 
give type of filter 1:LPF,2:HPF 
1:LPF 

Low pass FIR filter using Hamming Window 
 

 
 
 



Digital Signal Processing         Lab Manual  
enter your choice of window function 1. rectangular 2. 
Hamming 3.kaiser:  
 3 
kaiser window filter response 
give type of filter 1:LPF,2:HPF 
1:LPF 
 

Low pass FIR filter using Kaiser Window 
 

 
 

 
FIR High pass Filter design 

 
Results: 
enter passband ripple         0.02 
enter the stopband ripple     0.01 
enter passband freq           1000 
enter stopband freq           1500 
enter sampling freq           10000 
enter beta value                 5 
enter your choice of window function 1. rectangular 2. 
Hamming 3.kaiser:  
 1 
Rectangular window filter response 
give type of filter 1:LPF,2:HPF 
2:HPF 

 
  



Digital Signal Processing         Lab Manual  
 

High pass FIR filter using Rectangular Window 
 

 
 
enter your choice of window function 1. rectangular 2. 
Hamming 3.kaiser:  
2 
Hamming window filter response 
give type of filter 1:LPF,2:HPF 
2:HPF 

High pass FIR filter using Hamming Window 

 
 
enter your choice of window function 1. rectangular 2. 
Hamming 3.kaiser:  
 3 
kaiser window filter response 
give type of filter 1:LPF,2:HPF 
2: HPF 

 
 

  



Digital Signal Processing         Lab Manual  
 

High pass FIR filter using Kaiser Window 

 
 
Discussions on results: 
 
Thus FIR digital filter designing is experimented using Matlab software.  
 
Thus from the results students will be able to 
 

1) Discuss the effect of order of the filer on magnitude response. 
2) Discuss the effect of variation in pass band ripple, stop band ripple, pass band 

frequency, stop band frequency and sampling frequency respectively in 
designing the FIR digital filter. 

3) Discuss the difference between the Rectangular, Hamming and Kaiser 
Window functions. 

4) Discuss the performance of FIR digital filter designed using Kaiser window 
over FIR digital filter designed with Rectangular and Hamming window 
functions. 

  



Digital Signal Processing         Lab Manual  

41 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cycle-II 
 
 
 
  



Digital Signal Processing         Lab Manual  

42 

 

Introduction to TMS320C6713 DSK[ Courtesy: Texas Instrument] 
 

 
 
The C6713™ DSK builds on TI's industry-leading line of low cost, easy-to-use DSP 
Starter Kit (DSK) development boards. The high-performance board features the 
TMS320C6713 floating-point DSP. Capable of performing 1350 million floating-
point operations per second (MFLOPS), the C6713 DSP makes the C6713 DSK the 
most powerful DSK development board.  
The DSK is USB port interfaced platform that allows to efficiently develop and test 
applications for the C6713. The DSK consists of a C6713-based printed circuit board 
that will serve as a hardware reference design for TI’s customers’ products. With 
extensive host PC and target DSP software support, including bundled TI tools, the 
DSK provides ease-of-use and capabilities that are attractive to DSP engineers. 
 
The following checklist details items that are shipped with the C6711 DSK kit. 
 
 TMS320C6713 DSK TMS320C6713 DSK development board 

 
 Other hardware  External 5VDC power supply 

 
IEEE 1284 compliant male-to-female cable 
 

 CD-ROM   Code Composer Studio DSK tools 
 
The C6713 DSK has a TMS320C6713 DSP onboard that allows full-speed 
verification of code with Code Composer Studio. The C6713 DSK provides: 

 A USB Interface 
 SDRAM and ROM 
 An analog interface circuit  for Data conversion (AIC) 

 
 An I/O port 



Digital Signal Processing         Lab Manual  

43 

 Embedded JTAG emulation support 
Connectors on the C6713 DSK provide DSP external memory interface (EMIF) and 
peripheral signals that enable its functionality to be expanded with custom or third 
party daughter boards. 
 
The DSK provides a C6713 hardware reference design that can assist you in the 
development of your own C6713-based products. In addition to providing a reference 
for interfacing the DSP to various types of memories and peripherals, the design also 
addresses power, clock, JTAG, and parallel peripheral interfaces. 
 
The C6713 DSK includes a stereo codec. This analog interface circuit (AIC) has the 
following characteristics: 
 
High-Performance Stereo Codec 

 90-dB SNR Multibit Sigma-Delta ADC (A-weighted at 48 kHz) 
 100-dB SNR Multibit Sigma-Delta DAC (A-weighted at 48 kHz) 
 1.42 V – 3.6 V Core Digital Supply: Compatible With TI C54x DSP 

Core Voltages 
 2.7 V – 3.6 V Buffer and Analog Supply: Compatible Both TI C54x 

DSP Buffer Voltages 
  8-kHz – 96-kHz Sampling-Frequency Support 

 
Software Control Via TI McBSP-Compatible Multiprotocol Serial Port 

 I 2 C-Compatible and SPI-Compatible Serial-Port Protocols 
 Glueless Interface to TI McBSPs 
  

Audio-Data Input/Output Via TI McBSP-Compatible Programmable Audio Interface 
 I 2 S-Compatible Interface Requiring Only One McBSP for both ADC 

and DAC 
 Standard I 2 S, MSB, or LSB Justified-Data Transfers 
 16/20/24/32-Bit Word Lengths  

 
The C6713DSK has the following features: 
 
The 6713 DSK is a low-cost standalone development platform that enables customers 
to evaluate and develop applications for the TI C67XX DSP family.  The DSK also 
serves as a hardware reference design for the TMS320C6713 DSP.  Schematics, logic 
equations and application notes are available to ease hardware development and 
reduce time to market. 
 
The DSK uses the 32-bit EMIF for the SDRAM (CE0) and daughtercard expansion 
interface (CE2 and CE3).  The Flash is attached to CE1 of the EMIF in 8-bit mode. 
 
An on-board AIC23 codec allows the DSP to transmit and receive analog signals.  
McBSP0 is used for the codec control interface and McBSP1 is used for data.  Analog 
audio I/O is done through four 3.5mm audio jacks that correspond to microphone 
input, line input, line output and headphone output.  The codec can select the 
microphone or the line input as the active input.  The analog output is driven to both 
the line out (fixed gain) and headphone (adjustable gain) connectors.  McBSP1 can be 
re-routed to  the expansion connectors in software. 
 
A programmable logic device called a CPLD is used to implement glue logic that ties 
the board components together.  The CPLD has a register based user interface that lets  



Digital Signal Processing         Lab Manual  

44 

 
the user configure the board by reading and writing to the CPLD registers.  The 
registers reside at the midpoint of CE1.   
 
The DSK includes 4 LEDs and 4 DIP switches as a simple way to provide the user 
with interactive feedback.   Both are accessed by reading and writing to the CPLD 
registers. 
 
An included 5V external power supply is used to power the board.  On-board voltage 
regulators provide the 1.26V DSP core voltage, 3.3V digital and 3.3V analog 
voltages.  A voltage supervisor monitors the internally generated voltage, and will 
hold the board in reset until the supplies are within operating specifications and the 
reset button is released.  If desired, JP1 and JP2 can be used as power test points for 
the core and I/O power supplies. 
 
Code Composer communicates with the DSK through an embedded JTAG emulator 
with a USB host interface.  The DSK can also be used with an external emulator 
through the external JTAG connector. 
 

TMS320C6713 DSP Features 

 Highest-Performance Floating-Point Digital Signal Processor (DSP):  
 Eight 32-Bit Instructions/Cycle  
 32/64-Bit Data Word  
 300-, 225-, 200-MHz (GDP), and 225-, 200-, 167-MHz (PYP) Clock Rates  
 3.3-, 4.4-, 5-, 6-Instruction Cycle Times  
 2400/1800, 1800/1350, 1600/1200, and 1336/1000 MIPS /MFLOPS  
 Rich Peripheral Set, Optimized for Audio  
 Highly Optimized C/C++ Compiler  
 Extended Temperature Devices Available 

 Advanced Very Long Instruction Word (VLIW) TMS320C67x™ DSP Core  
 Eight Independent Functional Units:  

 Two ALUs (Fixed-Point)  
 Four ALUs (Floating- and Fixed-Point)  
 Two Multipliers (Floating- and Fixed-Point) 

 Load-Store Architecture With 32 32-Bit General-Purpose Registers  
 Instruction Packing Reduces Code Size  
 All Instructions Conditional 

 Instruction Set Features  
 Native Instructions for IEEE 754  

 Single- and Double-Precision 
 Byte-Addressable (8-, 16-, 32-Bit Data)  
 8-Bit Overflow Protection  
 Saturation; Bit-Field Extract, Set, Clear; Bit-Counting; Normalization 

 L1/L2 Memory Architecture  
 4K-Byte L1P Program Cache (Direct-Mapped)  
 4K-Byte L1D Data Cache (2-Way)  

 
 



Digital Signal Processing         Lab Manual  
 256K-Byte L2 Memory Total: 64K-Byte L2 Unified Cache/Mapped RAM, 

and 192K-Byte Additional L2 Mapped RAM 
 Device Configuration  

 Boot Mode: HPI, 8-, 16-, 32-Bit ROM Boot  
 Endianness: Little Endian, Big Endian 

 32-Bit External Memory Interface (EMIF)  
 Glueless Interface to SRAM, EPROM, Flash, SBSRAM, and SDRAM  
 512M-Byte Total Addressable External Memory Space 

 Enhanced Direct-Memory-Access (EDMA) Controller (16 Independent Channels)  
 16-Bit Host-Port Interface (HPI)  
 Two Multichannel Audio Serial Ports (McASPs)  

 Two Independent Clock Zones Each (1 TX and 1 RX)  
 Eight Serial Data Pins Per Port: 

   Individually Assignable to any of the Clock Zones  
 Each Clock Zone Includes:  

 Programmable Clock Generator  
 Programmable Frame Sync Generator  
 TDM Streams From 2-32 Time Slots  
 Support for Slot Size: 

   8, 12, 16, 20, 24, 28, 32 Bits  
 Data Formatter for Bit Manipulation 

 Wide Variety of I2S and Similar Bit Stream Formats  
 Integrated Digital Audio Interface Transmitter (DIT) Supports:  

 S/PDIF, IEC60958-1, AES-3, CP-430 Formats  
 Up to 16 transmit pins  
 Enhanced Channel Status/User Data 

 Extensive Error Checking and Recovery 
 Two Inter-Integrated Circuit Bus (I2C Bus™) Multi-Master and Slave Interfaces  
 Two Multichannel Buffered Serial Ports:  

 Serial-Peripheral-Interface (SPI)  
 High-Speed TDM Interface  
 AC97 Interface 

 Two 32-Bit General-Purpose Timers  
 Dedicated GPIO Module With 16 pins (External Interrupt Capable)  
 Flexible Phase-Locked-Loop (PLL) Based Clock Generator Module  
 IEEE-1149.1 (JTAG ) Boundary-Scan-Compatible  
 Package Options:  

 208-Pin PowerPAD™ Plastic (Low-Profile) Quad Flatpack (PYP)  
 272-BGA Packages (GDP and ZDP) 

 0.13-µm/6-Level Copper Metal Process  
 CMOS Technology 

 3.3-V I/Os, 1.2 -V Internal (GDP & PYP)  
 3.3-V I/Os, 1.4-V Internal (GDP)(300 MHz only) 

 

 



Digital Signal Processing         Lab Manual  

 
TMS320C6713 DSK Overview Block Diagram [Courtesy: Texas Instrument] 

 
 

 
 
 
 
 
 
 
 

Procedure to work with CCS-V5 using TMS320C6713 
 



Digital Signal Processing         Lab Manual  
Procedure to work with non real time program (Linear Convolution) 
Step1: Creation of a Target configuration 
            Filenewtarget configuration , you will get window as shown in fig1. You 
can give any target name with extension .ccxml (for example here I have taken target 
name as 6713.ccxml)  after giving the name click on finish. 
 

 
                                                                                       
Once you click on finish you will get general setup window as shown below in fig2. 
In the general setup you have select device and connection as mentioned below. 
Connection         : Spectrum Digital  DSK-EVM-eZdsp onboard USB Emulator 
Board or Device:  TMS320C6713 
Then click on SAVE 
 

 
 
  



Digital Signal Processing         Lab Manual  
 
 
Step 2: Launch the Target Configuration 
             Go to view from toolbar  
         View target configuration  , you can see your target name under user defined 
as circled in fig 3 . 
        Here under user defined it is showing 6713.ccxml it is my target. 
 
 

 
 
 
Right click on your target(6713.ccxml), then launch selected configuration as shown 
in fig4 below. 

 
                                                                                          
  



Digital Signal Processing         Lab Manual  
 
 
Step 3: Connecting the target 
 go to Runconnect target as shown in below. 
 
 

 
                                                                      
 
Note: on mail CCS window there are two prospective are there one is CCS Debug and 
one more is CCS edit . as shown in below diagram fig 6 . in CCS debug it contain all 
option related to target and in CCS edit it contain all options related to projects( 
source, lib etc) 
 
 

 
  



Digital Signal Processing         Lab Manual  
 
 
 
Step 4: Creation of a project 
      First click on CCS edit as shown below 
 

 
 
Then go to FilenewCCS Project as shown in below figure. 
 

 
                                                                            
 
Then make as changes as mentioned. 
 
Project name: any name (for example I have given as linear) 
Family            :  C6000 
Variant           : C671xFloating-point DSP     TMS320C6713 
Connection   : Spectrum Digital DSK-EVM-eZdsp onboard USB Emulator 
 
Then select empty project, Then click on finish . 
  



Digital Signal Processing         Lab Manual  
 

 
  



Digital Signal Processing         Lab Manual  
 
 
Step 5: Create  a source file 
 
      Filenew source file  
 Source file: give any name with extension .c(here I have given as lin.c) as sown in  
Then click on finish. 
 

 
                                                                  Fig 10 
 
Now write a code on workspace, then go to filesave. 
 
Step 6: Build the project 
    Go to ProjectBuild Project as shown in Fig 11below. 
 

 
                                                                           
  



Digital Signal Processing         Lab Manual  
 
Step 7: run the project 
 
Switch to CCS debug prospective as shown in below figure. 
 

 
                                                                                                
 
Then go to RunResume to run the program. 
You can see output of linear convoluted samples as in watch window by typing in 
expression  as mention below. 
Viewexpression 
Then type output variable name y  then enter as shown below. 
 

 
                                                                                                
 
 
Step 8: Plotting a graph  
    Go to  ToolsGraphSingle Time  , then make graphical properties change as per 
program here in fig14 I had made changes which round up with red line . this changes 
applicable for linear convolution program. Then click ok. 
  



Digital Signal Processing         Lab Manual  
  

 
                                                                              
 
In following figure my expected graph for linear con is displayed. 
 

 
                                                                                     
 
Procedure to work with  real time program(FIR) 
Note: Here again no need to create a new target configuration because we can use the 
same so now directly I will go to creating a project 
Step 1: Create a Project 
   Please refer  the step 4 of non real time program, give the project name as FIR. 
Step 2: Create  a source file 
  Please refer  the step 5 of non real time program , give the source file name as FIR.C. 
Step 3: Adding library file 
 Go to projectadd files as  shown in below figure. 
  



Digital Signal Processing         Lab Manual  
 
 

 
 
 
Then you have to add bsl and csl library files. These files you will get in below 
mentioned paths. 

 BSL(Board support library file) 

Path : C:\CCStudio_v3.1\C6000\dsk6713\lib\dsk6713bsl.lib 
 CSL(Chip support library file ) 

Path:  C:\CCStudio_v3.1\C6000\csl\lib\csl6713.lib 
You can see these files added to your project as shown below in figure. 
 
 

                                                               
                                                                               
  



Digital Signal Processing         Lab Manual  
 
Step 4: Setting Build properties 
Go to projectproperties , under  Build C6000 Compilerinclude options  now 
click on add as shown in below figure 
 

 
 
 
  Then  click on file system and go to this path C:\CCStudio_v3.1\C6000\csl\include, 
then ok.  
 
 

 
                                                                        
 
Now again under same build go to  
Build C6000 CompilerPredefined symbols , Then again click on add(On top right 
side Plus indication in green color symbol ). 
Then type As CHIP_6713 then apply ok, 
  



Digital Signal Processing         Lab Manual  
 
 

 
                                                                                        
 
Step 5: Build the project 
Go to ProjectBuild Project. 
Step 6: run the project 
Then go to RunResume to run the program. 
 
 
 
 
  



Digital Signal Processing         Lab Manual  
 
 

I. Procedure to work with NON REAL TIME programs (Linear 
Convolution): 

NR1: Creation of a project                                                            
 
Go  to FilenewCCS Project as shown in figure below 
 

 
                                                                             
 
Then make changes as mentioned below(or refer the figure in next page): 
 
Project name: any name (for example I have given as linear) 
Family            :  C6000 
Variant           : <LEAVE IT BLANK> | DSK6713 
Connection   : Spectrum Digital DSK-EVM-eZdsp onboard USB Emulator (if using 
the kit) 
Advanced settings: 
Linker Command file:        C:\CCStudio_v3.1\tutorial\dsk6713\hello1\hello.cmd 
Runtime Support Library: C:\CCStudio_v3.1\C6000\cgtools\lib\rts6700.lib 
 
Then select empty project, Then click on finish . 
  



Digital Signal Processing         Lab Manual  
 
 

 
 
 

 
                                                                  
 
  



Digital Signal Processing         Lab Manual  
 

NR2: Creation of source file (Use either a or b): 

 a. Create a source file  

File->new-> source file  

 

Source file: give any name with extension .c (here I have given as lin.c) Then click 
on finish.  
Now write a code (or copy the lin.c) on workspace, then go to file->save.  
 
 
 
 

 

  

 

 

 

 

 

 

 

  

//lin.c 
#include<stdio.h> 
#define LENGHT1 6 /*Lenght of i/p samples sequence*/ 
#define LENGHT2 4 /*Lenght of impulse response Co-efficients 
*/ 
int x[2*LENGHT1-1]={1,2,3,4,5,6,0,0,0,0,0}; /*Input Signal 
Samples*/ 
int h[2*LENGHT1-1]={1,2,3,4,0,0,0,0,0,0,0}; /*Impulse 
Response Coefficients*/ 
int y[LENGHT1+LENGHT2-1]; 
main() 
{ 
int i=0,j; 
for(i=0;i<(LENGHT1+LENGHT2-1);i++) 
{ 
y[i]=0; 
for(j=0;j<=i;j++) 
y[i]+=x[j]*h[i-j]; 
} 
for(i=0;i<(LENGHT1+LENGHT2-1);i++) 
printf("%d\n",y[i]); 



Digital Signal Processing         Lab Manual  
 

b. Add existing C file: 

Right click on project name and choose Add files.. 

Now browse the lin.c from the system and click OK. 

NR3: Build the project 
     
Go to ProjectBuild Project as shown below. 
 

 
 
If your code doesn’t have any errors and warnings, a message will be printed in the 
console window that “**** Build Finished ****”  
 
Problems window display errors or warnings, if any.  
 

 
 
 
  



Digital Signal Processing         Lab Manual  
 
NR4. DEBUG  
 
After successful Build, connect the kit with the system using the JTAG emulator and 
power the kit. 
Click the Debug as shown in the below figure. 
 

 
 
It will redirect to the Debug perspective automatically. 
 
NR5: Running  the project 
 
Wait until the program loaded to the hardware automatically. 
Now you can run the code, by selecting Run-> Resume. 
 

 
The linear convolution values will be displayed in the Console window.                                                                                              
 
NR6: Plotting a graph  
    Go to ToolsGraphSingle Time , then make graphical properties change as per 
program (Graph property will vary according to your program).  
These changes are applicable for linear convolution program. Then click ok  



Digital Signal Processing         Lab Manual  

 
 
 
 
        Expected graph for linear convolution:  
 
 

 
 
Terminate the project after use:  
 

 
 
Note: In the same way all the Non Real-Time projects can be done by just replacing the 
corresponding source files. 
 
  



Digital Signal Processing         Lab Manual  
 
II. Procedure for using simulation mode (without the kit and assuming 

that you have already created a non-real time project): 
 

 Goto File-> New -> Target Configuration File  
  

 
 

 Give a name with ‘.ccxml’ extension. 
 Connection: Texas Instruments Simulator 
 Device: <just type 6713> 
 Choose  ‘…..little endian’ (see the below figure) 

 

 
 

 Click SAVE. 
 View-> Target Configurations 
 Target Configurations tab will be opened: 

 

 
 

 Right on your file and click Launch Configuration: 
 
 
 
 



Digital Signal Processing         Lab Manual  
 

 
 

 Goto Run-> Load -> Load program-> Browse project 
 Choose the ‘.out’ file of your project from debug folder and OK. 
 Now you can RUN and plot graphs in the same way as in previous procedure. 

 
 
 
 
 
  



Digital Signal Processing         Lab Manual  
 

III. Procedure to work with REAL TIME program (FIR filter): 
 
R1: Create a Project: 
Project name: any name (for example I have given as FIR) 
Family            :  C6000 
Variant           : <LEAVE IT BLANK> | DSK6713 
Connection   : Spectrum Digital DSK-EVM-eZdsp onboard USB Emulator (if using 
the kit) 
Advanced settings: 
Linker Command file:        C:\CCStudio_v3.1\tutorial\dsk6713\hello1\hello.cmd 
Runtime Support Library: C:\CCStudio_v3.1\C6000\cgtools\lib\rts6700.lib 
 
Then select empty project, Then click on finish . 
 

 
 
  



Digital Signal Processing         Lab Manual  

67 

 
R2: Create  a source file 
  Please refer the step 2 of non real time program, give the source file name as FIR.C. 

 
//FIR.c 
#include "C:\CCStudio_v3.1\C6000\dsk6713\include\dsk6713.h" 
#include "C:\CCStudio_v3.1\C6000\dsk6713\include\dsk6713_aic23.h" 
 
float filter_Coeff[] = {  
 
  0.000000,-0.001591,-0.002423,0.000000,0.005728, 
0.011139,0.010502,-0.000000,-0.018003,-0.033416,-0.031505,0.000000, 
0.063010,0.144802,0.220534,0.262448,0.220534,0.144802,0.063010,0.000000, 
-0.031505,-0.033416,-0.018003,-0.000000,0.010502,0.011139,0.005728, 
0.000000,-0.002423,-0.001591,0.000000 
}; 
static short in_buffer[100];  
DSK6713_AIC23_Config config = { \ 
    0x0017,  /* 0 DSK6713_AIC23_LEFTINVOL  Left line input channel volume */ \ 
    0x0017,  /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume */\ 
    0x00d8,  /* 2 DSK6713_AIC23_LEFTHPVOL  Left channel headphone volume */  \ 
    0x00d8,  /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume */ \ 
    0x0011,  /* 4 DSK6713_AIC23_ANAPATH    Analog audio path control */      \ 
    0x0000,  /* 5 DSK6713_AIC23_DIGPATH    Digital audio path control */     \ 
    0x0000,  /* 6 DSK6713_AIC23_POWERDOWN  Power down control */             \ 
    0x0043,  /* 7 DSK6713_AIC23_DIGIF      Digital audio interface format */ \ 
    0x0081,  /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control */            \ 
    0x0001   /* 9 DSK6713_AIC23_DIGACT     Digital interface activation */   \ 
}; 
/* 
 *  main() - Main code routine, initializes BSL and generates tone 
 */ 
 
void main() 
{ 
    DSK6713_AIC23_CodecHandle hCodec; 
   
    Uint32 l_input, r_input,l_output, r_output; 
     
    /* Initialize the board support library, must be called first */ 
    DSK6713_init(); 
      
    /* Start the codec */ 
    hCodec = DSK6713_AIC23_openCodec(0, &config); 
      
    DSK6713_AIC23_setFreq(hCodec, 1); 
     
       while(1) 
        { /* Read a sample to the left channel */ 
   while (!DSK6713_AIC23_read(hCodec, &l_input)); 
    
   /* Read a sample to the right channel */ 
   while (!DSK6713_AIC23_read(hCodec, &r_input));           
     
    l_output=(Int16)FIR_FILTER(&filter_Coeff ,l_input); 
         r_output=(Int16)FIR_FILTER(&filter_Coeff ,r_input); 
    
   /* Send a sample to the left channel */ 
            while (!DSK6713_AIC23_write(hCodec, l_output)); 
 
            /* Send a sample to the right channel */ 
            while (!DSK6713_AIC23_write(hCodec, r_output)); 
        } 
    



Digital Signal Processing         Lab Manual  
    /* Close the codec */ 
    DSK6713_AIC23_closeCodec(hCodec); 
} 
signed int FIR_FILTER(float * h, signed int x) 
{ 
int i=0; 
signed long output=0; 
 
in_buffer[0] = x;  /* new input at buffer[0]  */ 
 
for(i=31;i>0;i--) 
in_buffer[i] = in_buffer[i-1]; /* shuffle the buffer   */ 
 
for(i=0;i<31;i++) 
output = output + h[i] * in_buffer[i]; 
 
return(output); 
 
} 
 

R3: Adding library files 
 Go to projectadd files as shown in below: 
 

 
 
Then you have to add bsl and csl library files. These files you will get in below 
mentioned paths. 

 BSL(Board support library file) 

Path : C:\CCStudio_v3.1\C6000\dsk6713\lib\dsk6713bsl.lib 
 CSL(Chip support library file ) 

Path:  C:\CCStudio_v3.1\C6000\csl\lib\csl6713.lib 
You can see these files added to your project as shown below: 
  



Digital Signal Processing         Lab Manual  
 
 

 
 
R4: Setting Build properties 
 Go to projectproperties , under  Build C6000 Compilerinclude 

options  now click on add as shown in below: 

  

 
 

 Then  click on file system and go to this path 
C:\CCStudio_v3.1\C6000\csl\include, then ok.  

 



Digital Signal Processing         Lab Manual  
 

 Now again under same build go to Build C6000 CompilerPredefined 
symbols , Then again click on add(On top right side Plus indication in green 
color symbol ). Then type as ”CHIP_6713” then apply ok as shown in below  

 
        
 
 
R5: Now Build, Debug and RUN the project as mentioned in NR3, NR4 and NR5. 

Connect CRO through stereo cable to the LINE OUT. 
Connect a Signal Generator through stereo cable to the LINE IN Socket. 
 The signal will be attenuated beyond 1 KHz for this program. 
 
In the same way all the Real-Time projects can be done just by replacing the 
corresponding source files. 
 
 
 

 
 

  



Digital Signal Processing         Lab Manual  

71 

 
Experiment -7 

 
Aim: To verify Linear Convolution using TMS320C6713 DSK 
 
Equipments Required: PC, TMS320C6713 DSK, Code composer Studiov5.5 
 
Theory: These operations can be represented by a Mathematical Expression as 
follows:  

[ ] [ ]. [ ]
k

y n x k h n k




   

   
x[ ]= Input signal Samples 

  h[ ]= Impulse response co-efficient. 
  y[ ]= Convolution output. 
    n = No. of Input samples 
    h = No. of Impulse response co-efficient. 
 
Algorithm: 
 
Algorithm to implement ‘C’ program for Convolution: 
 
Eg:   x[n] = {1, 2, 3, 4} 
  h[k] = {1, 2, 3, 4} 
 
Where: n=4, k=4.       ;Values of n & k should be a multiple of 4.  
      If n & k are not multiples of 4, pad with zero’s to make 

   multiples of 4      
   r= n+k-1       ; Size of output sequence. 
             = 4+4-1 
  = 7. 
r=             0          1             2  3     4               5               6   
n= 0 x[0]h[0]  x[0]h[1]    x[0]h[2]    x[0]h[3]     
      1   x[1]h[0]    x[1]h[1]    x[1]h[2]     x[1]h[3] 
      2                     x[2]h[0]     x[2]h[1]    x[2]h[2]    x[2]h[3] 
      3                     x[3]h[0]    x[3]h[1]    x[3]h[2]     x[3]h[3] 
 
 
Output:          y[r] = { 1, 4, 10, 20, 25, 24, 16}. 
 
Procedure: 
 

1) Step1: Creation of a Target configuration 
a. Filenewtarget configuration , you will get window as shown in 

fig1. You can give any target name with extension .ccxml (for example 
here I have taken target name as 6713.ccxml)  after giving the name 
click on finish. 

Once you click on finish you will get general setup window as shown below in 
fig2. In the general setup you have select device and connection as mentioned 
below. 
Connection         : Spectrum Digital  DSK-EVM-eZdsp onboard USB 
Emulator 
Board or Device:  TMS320C6713 
 



Digital Signal Processing         Lab Manual  

72 

 
Then click on SAVE 

2) Step 2: Launch the Target Configuration 
             Go to view from toolbar  

         View target configuration, you can see your target name under user 
defined as circled in fig 3 . 

         Here under user defined it is showing 6713.ccxml it is my target. 
3) Step 3: Connecting the target 

 go to Runconnect target as shown in below. 
Note: on mail CCS window there are two prospective are there one is CCS 
Debug and one more is CCS edit . as shown in below diagram fig 6 . in CCS 
debug it contain all option related to target and in CCS edit it contain all 
options related to projects( source, lib etc). 

4) Step 4: Creation of a project 
      First click on CCS edit as shown below 

Then go to FilenewCCS Project as shown in below figure. 
Then make as changes as mentioned. 

Project name: any name (for example I have given as linear) 
Family            :  C6000 
Variant           : C671xFloating-point DSP     TMS320C6713 
Connection   : Spectrum Digital DSK-EVM-eZdsp onboard USB 

Emulator 
Then select empty project, Then click on finish. 

5) Step 5: Create  a source file 
       Filenew source file  

Source file: give any name with extension .c(here I have given as lin.c) as 
sown in  
Then click on finish. 
Now write a code on workspace, then go to filesave. 

6) Step 6: Build the project 
     Go to ProjectBuild Project as shown in Fig 11below. 

7) Step 7: Run the project 
Switch to CCS debug prospective as shown in below figure. 
Then go to Runresume to run the program. 
You can see output of linear convoluted samples as in watch window by 
typing in expression  as mention below. 
Viewexpression 
Then type output variable name y  then enter as shown below. 

8) Step 8: Plotting a graph  
Go to  ToolsGraphSingle Time  , then make graphical properties change 
as per program here in fig14 I had made changes which round up with red line 
. this changes applicable for linear convolution program. Then click ok. 

. 
 
Program: 
 
/* program to implement linear convolution */ 
 
#include<stdio.h> 
#define LENGHT1 6 /*Length of i/p samples sequence*/ 
#define LENGHT2 4 /*Length of impulse response Co-
efficient */ 
 



Digital Signal Processing         Lab Manual  
int x[2*LENGHT1-1]={1,2,3,4,5,6,0,0,0,0,0}; /*Input 
Signal Samples*/ 
int h[2*LENGHT1-1]={1,2,3,4,0,0,0,0,0,0,0}; /*Impulse 
Response Co-efficient*/ 
 
int y[LENGHT1+LENGHT2-1]; 
 
main() 
{       
 int i=0,j; 
  
 for(i=0;i<(LENGHT1+LENGHT2-1);i++) 
 { 
 y[i]=0; 
 for(j=0;j<=i;j++) 
 
  y[i]+=x[j]*h[i-j]; 
 
 } 
 for(i=0;i<(LENGHT1+LENGHT2-1);i++) 
 printf("%d\n",y[i]); 
 
} 
 
Results: 
 
Thus, the Linear Convolution of two given discrete sequence has been performed. The 
input sequences are given in the program and the output will be displayed in the CCS 
software. 
Input   x[n] = {1, 2, 3, 4, 5, 6, 0, 0, 0, 0} 
   h[n] = {1, 2, 3, 4, 0, 0, 0, 0, 0, 0} 
Output:           y[n] = { 1, 4, 10, 20, 30, 40, 43, 38, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 
 
Now configure the Graphical window as shown below 
 

 
 
 
 
 



Digital Signal Processing         Lab Manual  

74 

Discussions on results: 
 
 
Thus we have verified the Linear Convolution in Code composer studio environment 
by writing a C program. 
  
From the results students will be able to  
 

1) Discuss the steps required to interface TMS320C6713 Kit with Code 
composer studio environment. 

2) Discuss the changes in the program to get the input sequences from user. 
3) Discuss the steps required in graphical property dialog of the Code 

composer studio for graphical visualization of linear convolution output  
  



Digital Signal Processing         Lab Manual  

75 

 
Experiment -8 

 
Aim: Generation of Sine wave and square wave using TMS320C6713 DSK and Code 
Composer Studio. 
 
Equipments Required: PC, TMS320C6713 DSK, Code composer Studiov5.5 
 
Theory:  
 
Sinusoidal Wave: The sine wave or sinusoidal wave is a mathematical curve that 
describes smooth repetitive oscillations. It can be represented in mathematical form as 
 

( ) sin ( )y t A t t  
 Where  

A=Amplitude in V. 

ω=angular frequency 
ϕ=Phase in radins.

 

 
Square Wave: The square wave is a non sinusoidal periodic wave form which is 
represented as infinite summation of sinusoidal waves in which the amplitude 
alternates at a steady frequency between fixed minimum and maximum values with 
the same duration at maximum and minimum. 
 
Algorithm: 
 

1) Define frequency in C program. 
2) Generate the signals using corresponding general formula.  
3) Plot the graph in Code Composer Studio. 

 
Procedure for Sinusoidal wave form generation 
 

1) Step1: Creation of a Target configuration 
a. Filenewtarget configuration , you will get window as shown in 

fig1. You can give any target name with extension .ccxml (for example 
here I have taken target name as 6713.ccxml)  after giving the name 
click on finish. 

Once you click on finish you will get general setup window as shown below in 
fig2. In the general setup you have select device and connection as mentioned 
below. 
Connection         : Spectrum Digital  DSK-EVM-eZdsp onboard USB 
Emulator 
Board or Device:  TMS320C6713 
Then click on SAVE 

2) Step 2: Launch the Target Configuration 
             Go to view from toolbar  

         View target configuration, you can see your target name under user 
defined as circled in fig 3 . 

         Here under user defined it is showing 6713.ccxml it is my target. 
3) Step 3: Connecting the target 

 go to Runconnect target as shown in below. 
 



Digital Signal Processing         Lab Manual  

76 

 
Note: on mail CCS window there are two prospective are there one is CCS 
Debug and one more is CCS edit. In CCS debug it contain all option related to 
target and in CCS edit it contain all options related to projects( source, lib etc). 

4) Step 4: Creation of a project 
      First click on CCS edit as shown below 

Then go to FilenewCCS Project 
Then make as changes as mentioned. 

Project name: any name (for example SivewaveGen) 
Family            :  C6000 
Variant           : C671xFloating-point DSP     TMS320C6713 
Connection   : Spectrum Digital DSK-EVM-eZdsp onboard USB 

Emulator 
Then select empty project, Then click on finish. 

5) Step 5: Create  a source file 
       Filenew source file  

Source file: give any name with extension .c(here I have given as 
SivewaveGen.c). Then click on finish. Now write a code on workspace, then 
go to filesave. 

6) Step 6: Build the project 
     Go to ProjectBuild Project  

7) Step 7: Run the project 
Switch to CCS debug prospective as shown in below figure. 
Then go to Runresume to run the program. 
You can see output of linear convoluted samples as in watch window by 
typing in expression  as mention below. 
Viewexpression 
Then type output variable name y  then enter as shown below. 

8) Step 8: Plotting a graph  
Go to  ToolsGraphSingle Time  , then make graphical properties change 
as per program here in fig14 I had made changes which round up with red line 
. this changes applicable for linear convolution program. Then click ok. 

. 
Program: 
 
/* program for sinewave generation */ 
 
#include<stdio.h> 
#include<math.h> 
 
#define freq 400  
 float m[128]; 
 
main() 
{       
 int n=0; 
 for(n=0;n<127;n++) 
 { 
    m[n]=sin(2*3.14*freq*n/24000) 

   printf(“%f”,m[n]); 
 } 
 
} 



Digital Signal Processing         Lab Manual  
 
Program for Square wave Generation 
 
/* program for Squarewave generation */ 
 
#include<stdio.h> 
#include<math.h> 
#define freq 500  
 float m[81]; 
 
main() 
{       
 int n=0; 
 for(n=0;n<21;n++) 
 { 
    m[n]=5.0 

} 
 for(n=21;n<41;n++) 
 { 
    m[n]=-5.0 

} 
 for(n=41;n<61;n++) 
 { 
    m[n]=5.0 

} 
for(n=61;n<81;n++) 

 { 
    m[n]=-5.0 

} 
} 
 
Plot of sine waveform  

 

 
 



Digital Signal Processing         Lab Manual  

78 

 
Results: 
 
Thus, the waveform generation on sine wave and square wave is performed in Code 
composer environment by using a C program. Output will be displayed in the 
graphical window of CCS software. 
Now configure the graphical window as shown below for Sine wave generation .the 
same procedure can be followed for square wave generation. 
 
Discussion on Results: 
 
Thus we have performed the waveform generation in Code composer studio 
environment by writing a C program. 
 
From the results the student will be able to 
 

1) Discuss the steps required to interface TMS320C6713 Kit with Code 
composer studio environment. 

2) Discuss the changes in the program to get the input sequences from user. 
3) Discuss the steps required in graphical property dialog of the Code 

composer studio for graphical visualization of the sine wave and square 
wave output. 



Digital Signal Processing         Lab Manual  
Experiment -9 

 
Aim: Computation of DFT and DIT FFT using TMS320C6713 DSK and Code Composer 
Studio. 
 
Equipments Required: PC, TMS320C6713 DSK, Code composer Studiov5.5 
 
Theory:  
 
Discrete Fourier Transform (DFT) is used for performing frequency analysis of discrete 
time signals. DFT gives a discrete frequency domain representation whereas the other 
transforms are continuous in frequency domain. The N point DFT of discrete time signal 
x[n] is given by the equation 

 
The inverse DFT allows us to recover the sequence x[n] from the frequency samples 
 

 
 
A Fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier 
transform (DFT) and its inverse. There are many distinct FFT algorithms involving a 
wide range of mathematics, from simple complex number arithmetic to group theory and 
number theory. 
A DFT decomposes a sequence of values into components of different frequencies. This 
operation is useful in many fields (see discrete Fourier transform for properties and 
applications of the transform) but computing it directly from the definition is often too 
slow to be practical. An FFT is a way to compute the same result more quickly: 
computing a DFT of N points in the naive way, using the definition, takes O(N2) 
arithmetical operations, while an FFT can compute the same result in only O(N log N) 
operations. The difference in speed can be substantial, especially for long data sets where 
N may be in the thousands or millions—in practice, the computation time can be reduced 
by several orders of magnitude in such cases, and the improvement is roughly 
proportional to N / log(N). This huge improvement made many DFT based algorithms 
practical; FFTs are of great importance to a wide variety of applications, from digital 
signal processing and solving partial differential equations to algorithms for quick 
multiplication of large integers. The most well known FFT algorithms depend upon the 
factorization of N, but there are FFTs with O(N log N) complexity for all N, even for 
prime N. 

 



Digital Signal Processing         Lab Manual  

80 

 
Algorithm: 
 

1) Enter the length of the sequence for which DFT need to be computed. 
2) Enter the sequence data as per the length of the sequence 4 or 8. 
3) Compute the 4 point or 8 point DFT using the code. 
4) Get the results in the Console window. 

 
 
Procedure for DFT Computation 
 

1) Step1: Creation of a Target configuration 
a. Filenewtarget configuration , you will get window as shown in 

fig1. You can give any target name with extension .ccxml (for example 
here I have taken target name as 6713.ccxml)  after giving the name 
click on finish. 

Once you click on finish you will get general setup window as shown below in 
fig2. In the general setup you have select device and connection as mentioned 
below. 
Connection         : Spectrum Digital  DSK-EVM-eZdsp onboard USB 
Emulator 
Board or Device:  TMS320C6713 
Then click on SAVE 

2) Step 2: Launch the Target Configuration 
             Go to view from toolbar  

         View target configuration, you can see your target name under user 
defined as circled in fig 3 . 

         Here under user defined it is showing 6713.ccxml it is my target. 
3) Step 3: Connecting the target 

 go to Runconnect target as shown in below. 
Note: on mail CCS window there are two prospective are there one is CCS 
Debug and one more is CCS edit. In CCS debug it contain all option related to 
target and in CCS edit it contain all options related to projects( source, lib etc). 

4) Step 4: Creation of a project 
      First click on CCS edit as shown below 

Then go to FilenewCCS Project 
Then make as changes as mentioned. 

Project name: any name (for example DFTComput) 
Family            :  C6000 
Variant           : C671xFloating-point DSP     TMS320C6713 
Connection   : Spectrum Digital DSK-EVM-eZdsp onboard USB 

Emulator 
Then select empty project, Then click on finish. 

5) Step 5: Create  a source file 
       Filenew source file  

Source file: give any name with extension .c (here I have given as 
DFTComput.c). Then click on finish. Now write a code on workspace, then go 
to filesave. 

6) Step 6: Build the project 
     Go to ProjectBuild Project  

7) Step 7: Run the project 
Switch to CCS debug prospective as shown in below figure. 
Then go to Runresume to run the program. 



Digital Signal Processing         Lab Manual  

81 

You can see output of linear convoluted samples as in watch window by 
typing in expression  as mention below. 
Viewexpression 
Then type output variable name y  then enter as shown below. 

8) Step 8: Plotting a graph  
Go to  ToolsGraphSingle Time  , then make graphical properties change 
as per program here in fig14 I had made changes which round up with red line 
. this changes applicable for linear convolution program. Then click ok. 

 
Program: 
 
/* program for DFT Computation */ 
 
#include<stdio.h> 
#include<math.h> 
int N,k,n,i; 
float pi=3.1416, sumre=0, 
sumim=0,out_real[8]={0.0},out_imag[8]={0.0}; 
int x[32]; 
 
void main(void) 
{ 
 printf("enter the length of the sequence \n"); 
 scanf("%d",&N); 
 printf("enter the sequence\n"); 
 for (i=0;i<N;i++) 
  scanf("%d",&x[i]); 
for(k=0;k<N;k++) 
{ 
 sumre=0; 
 sumim=0; 
 
  
for(n=0;n<N;n++) 
 { 
  sumre=sumre+x[n]*cos(2*pi*k*n/N); 
  sumim=sumim-x[n]*sin(2*pi*k*n/N); 
 } 
 out_real[k]=sumre; 
 out_imag[k]=sumim; 
 printf("X([%d])= \t%f\t+\t%fi\n",k, out_real[k],out_imag[k]); 
} 
} 

 
Results: 
 
enter the length of the sequence  
4 
enter the sequence 
1 
2 
3 
4 
X([0])=  10.000000 + 0.000000i 
X([1])=  -1.999963 + 2.000022i 
X([2])=  -2.000000 + 0.000059i 
X([3])=  -2.000108 + -1.999934i 
 
 
 



Digital Signal Processing         Lab Manual  

82 

 
Program for the DIT FFT Algorithm: 
 
#include<stdio.h> 
#include<conio.h> 
#include<math.h> 
#define SWAP(a,b)var=(a);(a)=(b);(b)=var; 
 
void main() 
{ 
 int N,n,m,j,k,i,p; 
 float data[200],real1,imag1,real2,imag2,var; 
 float costheta,sintheta,t,Theta; 
 
 clrscr(); 
 printf("\n\t\t Readix-2 DIT FFT algorithm\n\n"); 
 
 printf("\n\n Enter the number of samples in the sequence x(n),N="); 
 scanf("%d",&N); 
 
 printf("\n\n Enter the Samples of the Sequence x(n):\n"); 
 printf("\n Real part  Imaginary part"); 
 
 for(n=1;n<=N;n++) 
 { 
   printf("\n x(%d)=",n-1); 
   scanf("%f%f",&data[2*n-1],&data[2*n]); 
 } 
 n=N<<1; 
 j=1; 
 
 for(i=1;i<n;i=i+2) 
 { 
  if(j>i) 
  { 
   SWAP(data[j],data[i]); 
   SWAP(data[j+1],data[i+1]); 
  } 
  m=n>>1; 
  while(m>=2 && j>m) 
  { 
   j-=m; 
   m>>=1; 
  } 
  j+=m; 
 } 
 
 k=1;m=1;t=0.0; 
 while((N/(2*k))>=1) 
 { 
  p=pow(2,m); 
  n=1; 
  Theta=((2*M_PI)/(float)p)*t; 
  costheta=cos(Theta); 
  sintheta=sin(Theta); 
 
  for(i=1;i<=2*N;) 
  { 
   real1=data[i]+costheta*data[i+p]+sintheta*data[i+1+p]; 
   imag1=data[i+1]+costheta*data[i+1+p]-sintheta*data[i+p]; 
   real2=data[i]-costheta*data[i+p]-sintheta*data[i+1+p]; 
   imag2=data[i+1]-costheta*data[i+1+p]+sintheta*data[i+p]; 
 
   



Digital Signal Processing         Lab Manual  

83 

   data[i]=real1; 
   data[i+1]=imag1; 
   data[i+p]=real2; 
   data[i+p+1]=imag2; 
 
   if(n<k) 
   { 
    t=t+1; 
    Theta=((2*M_PI)/(float)p)*t; 
    costheta=cos(Theta); 
    sintheta=sin(Theta); 
   } 
   else 
   { 
    i=i+p+2; 
    n=1; 
    t=0; 
    Theta=((2*M_PI)/(float)p)*t; 
    costheta=cos(Theta); 
    sintheta=sin(Theta); 
   } 
  } 
  k=k<<1; 
  m++; 
 } 
 
 printf("\n\n Output of DIT FFt is as follows:\n"); 
 printf("\n\n Real part of X[k]       Imaginary part of X[k]"); 
 for(n=1;n<=N;n++) 
 { 
  printf("\n%f\t\t %f ",data[2*n-1],data[2*n]); 
 } 
 } 

 
Results: 
 
Enter the number of samples in the sequence x(n),N=8 
 
 Enter the samples of the sequence x(n): 
 
       Real Part   Imaginary Part 
 
 x(0)=   0.5           0 
 
 x(1)=   0.5           0 
 
 x(2)=   0.5           0 
 
 x(3)=   0.5           0 
 
 x(4)=    0            0    
 
 x(5)=    0            0    
 
 x(6)=    0            0    
 
 x(7)=    0            0    
 
 
 Output of DIT FFT is as follows 
 
       Real part of X(k)   Imaginary part of X(k) 
 
          



Digital Signal Processing         Lab Manual  

84 

    
   2.000000             0.000000 

 
         0.500000             -1.207107   
 
         0.000000             0.000000 
 
         0.500000             -0.207107 
 
         0.000000             0.000000 
 
         0.500000             0.207107 
 
         0.000000             0.000000 
  
         0.500000             1.207107 
 
Discussion: 
 
Thus, the DFT computation is performed for N=4 using the Code composer 
environment by using a C program. Output will be displayed in the Console window 
of CCS software. 
 
   



Digital Signal Processing         Lab Manual  

85 

 
Experiment -10 

 
Aim: Generating the Responses of Low Pass and High Pass IIR filters using DSP 
Trainer Kit (TMS320C6713) 
 
Equipment Required: PC Host (PC) with windows (95/98/Me/XP/NT/2000), 
TMS320C6713 DSP Starter Kit (DSK).Oscilloscope and Function generator, Code 
Composer Studio v3.0 
 
Algorithm: 

We need to realize the Butter worth band pass IIR filter by implementing the 
difference equation y[n] =  b0x[n] + b1x[n-1]+b2x[n-2]-a1y[n-1]-a2y[n-2] 
where b0 – b2, a0-a2 are feed forward and feedback word coefficients 
respectively [Assume 2nd order of filter].These coefficients are calculated 
using MATLAB.A direct form I implementation approach is taken.  

 
1) Initialize the McBSP, the DSP board and the on board codec.  

“Kindly refer the Topic Configuration of 6713Codec using BSL” 
2) Initialize the discrete time system , that is , specify the initial conditions. 

Generally zero initial conditions are assumed. 
3) Take sampled data from codec while input is fed to DSP kit from the 

signal generator. Since Codec is stereo , take average of input data read 
from left and right channel .  Store sampled data at a memory location. 

4) Perform filter operation using above said difference equation  and store  
filter Output at a memory location . 

5) Output the value to codec (left channel and right channel) and view the 
output at Oscilloscope. 

6) Step 6 - Go to step 3. 
 
Procedure for Real time Programs: 
 
1. Connect CRO to the Socket Provided for LINE OUT. 
2. Connect a Signal Generator to the LINE IN Socket. 
3. Switch on the Signal Generator with a sine wave of frequency 500 Hz. and Vp-

p=1.5v 
4. Now Switch on the DSK and Bring Up Code Composer Studio on the PC. 
5. Create a new project with name codec.pjt. 
6. From the File Menu  new  DSP/BIOS Configuration select  
      “dsk6713.cdb” and save it as “xyz.cdb”  
 
 
 
  



Digital Signal Processing         Lab Manual  
 

 
 
7. Add “xyz.cdb” to the current project.  
8. Add the given “codec.c” file to the current project which has the main function 

and calls all the other necessary routines. 
9. Add the library file “dsk6713bsl.lib”  to the current project 
      Path   “C:\CCStudio\C6000\dsk6713\lib\dsk6713bsl.lib”  
10. Copy files “dsk6713.h” and  “dsk6713_aic23.h” from 

C:\CCStudio\C6000\dsk6713\include and paste it in current project. 
11. Build, Load and Run the program. 
12. You can notice the input signal of 500 Hz. appearing on the CRO verifying the 

codec configuration.  
13. You can also pass an audio input and hear the output signal through the speakers. 
14. You can also vary the sampling frequency using the DSK6713_AIC23_setFreq 

Function in the “codec.c” file and repeat the above steps. 
 
Procedure to execute IIR Filter Program 
 

1) Switch on the DSP board. 
2) Open the Code Composer Studio. 
3) Create a new project  

Project  New (File Name. pjt , Eg: IIR.pjt) 
4) Initialize on board codec.  
5) Add the given above ‘C’ source file to the current project (remove codec.c 

source file from the project if you have already added). 
6) Connect the speaker jack to the input of the CRO. 
7) Build the program.  
8) Load the generated object file (*.out) on to Target board. 
9) Run the program  
10) Observe the waveform that appears on the CRO screen. 
11) Vary the frequency on function generator to see the response of filter. 

 
Program: 
 
#include "xyzcfg.h" 
#include "dsk6713.h" 
#include "dsk6713_aic23.h" 
 
const signed int filter_Coeff[] =  
{ 
     //12730,-12730,12730,2767,-18324,21137 /*HP 2500 */ 
     //312,312,312,32767,-27943,24367       /*LP 800 */ 



Digital Signal Processing         Lab Manual  

87 

     
 
 //1455,1455,1455,32767,-23140,21735 /*LP 2500 */ 
     //9268,-9268,9268,32767,-7395,18367 /*HP 4000*/ 
       7215,-7215,7215,32767,5039,6171,  /*HP 7000*/ 
} ; 
 
/* Codec configuration settings */ 
DSK6713_AIC23_Config config = { \ 
    0x0017,  /* 0 DSK6713_AIC23_LEFTINVOL  Left line input channel volume */ 
\ 
    0x0017,  /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume 
*/\ 
    0x00d8,  /* 2 DSK6713_AIC23_LEFTHPVOL  Left channel headphone volume */  
\ 
    0x00d8,  /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume */ 
\ 
    0x0011,  /* 4 DSK6713_AIC23_ANAPATH    Analog audio path control */      
\ 
    0x0000,  /* 5 DSK6713_AIC23_DIGPATH    Digital audio path control */     
\ 
    0x0000,  /* 6 DSK6713_AIC23_POWERDOWN  Power down control */             
\ 
    0x0043,  /* 7 DSK6713_AIC23_DIGIF      Digital audio interface format */ 
\ 
    0x0081,  /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control */            
\ 
    0x0001   /* 9 DSK6713_AIC23_DIGACT     Digital interface activation */   
\ 
}; 
 
/* 
 *  main() - Main code routine, initializes BSL and generates tone 
 */ 
void main() 
{ 
    DSK6713_AIC23_CodecHandle hCodec; 
     
    int l_input, r_input, l_output, r_output; 
     
    /* Initialize the board support library, must be called first */ 
    DSK6713_init(); 
      
    /* Start the codec */ 
    hCodec = DSK6713_AIC23_openCodec(0, &config); 
     
    DSK6713_AIC23_setFreq(hCodec, 3); 
     
       while(1) 
        {  /* Read a sample to the left channel */ 
  while (!DSK6713_AIC23_read(hCodec, &l_input)); 
    
  /* Read a sample to the right channel */ 
  while (!DSK6713_AIC23_read(hCodec, &r_input));           
    
   l_output=IIR_FILTER(&filter_Coeff ,l_input); 
     r_output=l_output; 
          
  /* Send a sample to the left channel */ 
             while (!DSK6713_AIC23_write(hCodec, l_output)); 
 
            /* Send a sample to the right channel */ 
             while (!DSK6713_AIC23_write(hCodec, r_output)); 
        } 
    
    /* Close the codec */ 
    DSK6713_AIC23_closeCodec(hCodec); 
} 
 
signed int IIR_FILTER(const signed int * h, signed int x1) 
{ 



Digital Signal Processing         Lab Manual  

88 

static signed int x[6] = { 0, 0, 0, 0, 0, 0 };  /* x(n), x(n-1), x(n-2). 
Must be static */ 
   static signed int y[6] = { 0, 0, 0, 0, 0, 0 };  /* y(n), y(n-1), y(n-
2). Must be static */  
     int temp=0; 
 
   temp = (short int)x1; /* Copy input to temp */ 
 
   x[0] = (signed int) temp; /* Copy input to x[stages][0] */ 
     
   temp =  ( (int)h[0] * x[0]) ;   /* B0 * x(n)   */ 
   
     temp += ( (int)h[1] * x[1]);    /* B1/2 * x(n-1) */ 
 temp += ( (int)h[1] * x[1]);    /* B1/2 * x(n-1) */ 
      temp += ( (int)h[2] * x[2]);    /* B2 * x(n-2) */ 
   
      temp -= ( (int)h[4] * y[1]);    /* A1/2 * y(n-1) */ 
   temp -= ( (int)h[4] * y[1]);    /* A1/2 * y(n-1) */ 
     temp -= ( (int)h[5] * y[2]);   /* A2 * y(n-2) */ 
  
    /* Divide temp by coefficients[A0] */     
     

 temp >>= 15; 
 
    if ( temp > 32767 ) 
       { 
         temp = 32767; 
       } 
     else if ( temp < -32767) 
       { 
         temp = -32767; 
       } 
 y[0] =  temp ; 
 
     /* Shuffle values along one place for next time */ 
   
     y[2] = y[1];   /* y(n-2) = y(n-1) */ 
     y[1] = y[0];   /* y(n-1) = y(n)   */ 
     
     x[2] = x[1];   /* x(n-2) = x(n-1) */ 
     x[1] = x[0];   /* x(n-1) = x(n)   */ 
 
     /* temp is used as input next time through */ 
    
  return (temp<<2);  
} 

 
Results:  

 
Thus the result can be observer on the CRO for various frequencies. 
 
Discussions on results: 
 
The designing of IIR Low pass and High Pass Filters requires initialization of BSL 
codec.  
 
From the results students will be able to  

1) Discuss the real time interfacing of the TMS320C6713 Kit by using the 
full functionality of the board support library files and BSL Codec. 

2) Discuss the effect of changing the value of coefficients for filters. 
3) Discuss the steps required to do the connection of CRO and function 

generator to TMS320C6713 Kit. 


