
ECE Department MPMC Lab-PC455EC

MJCET Page 1

MUFFAKHAM JAH

COLLEGE OF ENGINEERING AND TECHNOLOGY

PC455EC MICROPROCESSOR &

MICROCONTROLLER LAB MANUAL

(With effect from the academic year 2022-2023)

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

ECE Department MPMC Lab-PC455EC

MJCET Page 2

Vision and Mission of the Institution

Vision

To be part of universal human quest for development and progress by contributing high

calibre, ethical and socially responsible engineers who meet the global challenge of

building modern society in harmony with nature.

Mission

• To attain excellence in imparting technical education from the undergraduate through

doctorate levels by adopting coherent and judiciously coordinated curricular and co-

curricular programs

• To foster partnership with industry and government agencies through collaborative

research and consultancy

• To nurture and strengthen auxiliary soft skills for overall development and improved

employability in a multi-cultural work space

• To develop scientific temper and spirit of enquiry in order to harness the latent

innovative talents

• To develop constructive attitude in students towards the task of nation building and

empower them to become future leaders

• To nourish the entrepreneurial instincts of the students and hone their business

acumen.

• To involve the students and the faculty in solving local community problems through

economical and sustainable solutions.

Vision and Mission of ECE Department

Vision
To be recognized as a premier education center providing state of art education and

facilitating research and innovation in the field of Electronics and Communication.

Mission
We are dedicated to providing high quality, holistic education in Electronics and

Communication Engineering that prepares the students for successful pursuit of higher

education and challenging careers in research, R& D and Academics.

Program Educational Objectives of B. E (ECE) Program:

1. Graduates will demonstrate technical competence in their chosen fields of

employment by identifying, formulating, analyzing and providing engineering

solutions using current techniques and tools

2. Graduates will communicate effectively as individuals or team members and

demonstrate leadership skills to be successful in the local and global cross-cultural

working environment

3. Graduates will demonstrate lifelong learning through continuing education and

professional development

4. Graduates will be successful in providing viable and sustainable solutions within

societal, professional, environmental and ethical contexts

ECE Department MPMC Lab-PC455EC

MJCET Page 3

MUFFAKHAM JAH

COLLEGE OF ENGINEERING AND TECHNOLOGY

BANJARA HILLS, ROAD NO-3, TELANGANA-500034

LABORATORY MANUAL

FOR

MICROPROCESSOR & MICROCONTROLLER LAB

Prepared by: HAKEEM AEJAZ ASLAM Checked by: J.K.NAG

Approved by: Dr. ARIFUDDIN SOHEL

ECE Department MPMC Lab-PC455EC

MJCET Page 4

MUFFAKHAM JAH

COLLEGE OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS

ENGINEERING

(Name of the Subject/Lab Course): Microprocessor & Microcontroller Lab

Code: PC453EC Programme: UG

Branch: ECE Version No: 1

Year : III Updated on: 03/8/22

Semester: V No. of Pages: 112

Classification Status (Unrestricted/restricted): Unrestricted

Distribution List: Department, Lab, Library, Lab Incharge

Prepared by: 1) Name: 1) Name:

 2) Sign : 2) Sign :

 3) Designation: 3) Designation:

 4) Date : 4) Date :

Verified by: 1) Name: * For Q.C Only

 2) Sign : 1) Name:

 3) Designation: 2) Sign :

 4) Date : 3) Designation:

 4) Date :

Approved by: (HOD) 1) Name:

 2) Sign :

 3) Date :

ECE Department MPMC Lab-PC455EC

MJCET Page 5

List of Experiments

PART- A

1. Use of 8086 trainer kit and execution of programs. (Instruction set for simple

Programs using 4 to 5 lines of instruction code under different addressing modes

for data transfer, manipulation, Arithmetic operations)

2. Branching operations and logical operations in a given data.

i) transfer byte and word data from source to destination memory.

ii) Count even and odd numbers from given Array of ten bytes.

iii) Find Largest and Smallest number from given array of words

iv) Sort the given array in ascending order, descending order

3. Multiplication and Division

i) Use MUL and IMUL for Unsigned and signed multiplication on 8 bit and 16

bit data sets

ii) Use DIV and IDIV for Unsigned and signed division on 8 bit and 16bit data

sets

iii) Obtain given decimal number to unpacked BCD ex: 123410 as 01,02,03,04

and store in memory using DIV

iv) Find Factorial of a given number using multiplication instructions

4. Single byte, multi-byte Binary and BCD addition and subtraction

5. Code conversions.

i) BCD Unpacked to Packed BCD

ii) Ascii code to BCD code

iii) BCD to Ascii

6. String Searching and Sorting.(Using string instructions)

i) Find number of repetitions of a character in a string

ii) Find and replace a character in the given string

iii) Convert Case of a given string

iv) Find whether given string is palindrome or not

 Part B

[Experiments for 8051 using any C- Cross Compiler & appropriate hardware]

1. Familiarity and use of 8051/8031 Microcontroller trainer, and execution of

programs.

2. Instruction set for simple Programs (using 4 to 5 lines of instruction code).

3. Timer and counter operations & programming using 8051.

4. Serial communications using UART

5. Programming using interrupts

6. Interfacing 8051 with DAC to generate waveforms.

ECE Department MPMC Lab-PC455EC

MJCET Page 6

7. Interfacing traffic signal control using 8051.

8. Program to control stepper motor using 8051.

9. ADC interfacing with 8051

10. Serial RTC interfacing with 8051

11. LCD interfacing with 8051

NOTE: 1. At least ten experiments to be conducted in the semester.

 2. Minimum of 5 from Part A and 5 from Part B is compulsory.

 3. In Part-B, perform the experiments using assembler simulators like edsim51/Keil

 Software.

ECE Department MPMC Lab-PC455EC

MJCET Page 7

MICROPROCESSOR & MICROCONTROLLER LAB

GENERAL GUIDELINES AND SAFETY INSTRUCTIONS
1. Sign in the log register as soon as you enter the lab and strictly observe your lab

timings.

2. Strictly follow the written and verbal instructions given by the teacher / Lab

Instructor. If you do not understand the instructions, the handouts and the procedures,

ask the instructor or teacher.

3. Never work alone! You should be accompanied by your laboratory partner and / or

the instructors / teaching assistants all the time.

4. It is mandatory to come to lab in a formal dress and wear your ID cards.

5. Do not wear loose-fitting clothing or jewelry in the lab. Rings and necklaces are usual

excellent conductors of electricity.

6. Mobile phones should be switched off in the lab. Keep bags in the bag rack.

7. Keep the labs clean at all times, no food and drinks allowed inside the lab.

8. Intentional misconduct will lead to expulsion from the lab.

9. Do not handle any equipment without reading the safety instructions. Read the

handout and procedures in the Lab Manual before starting the experiments.

10. Do your wiring, setup, and a careful circuit checkout before applying power. Do not

make circuit changes or perform any wiring when power is on.

11. Avoid contact with energized electrical circuits.

12. Do not insert connectors forcefully into the sockets.

13. NEVER try to experiment with the power from the wall plug.

14. Immediately report dangerous or exceptional conditions to the Lab instructor/

teacher: Equipment that is not working as expected, wires or connectors are broken,

the equipment that smells or “smokes”. If you are not sure what the problem is or

what's going on, switch off the Emergency shutdown.

15. Never use damaged instruments, wires or connectors. Hand over these parts to the

Lab instructor/Teacher.

16. Be sure of location of fire extinguishers and first aid kits in the laboratory.

17. After completion of Experiment, return the bread board, trainer kits, wires, CRO

probes and other components to lab staff. Do not take any item from the lab without

permission.

18. Observation book and lab record should be carried to each lab. Readings of current

lab experiment are to be entered in Observation book and previous lab experiment

should be written in Lab record book. Both the books should be corrected by the

faculty in each lab.

19. Handling of Semiconductor Components: Sensitive electronic circuits and electronic

components have to be handled with great care. The inappropriate handling of

electronic component can damage or destroy the devices. The devices can be

destroyed by driving to high currents through the device, by overheating the device,

by mixing up the polarity, or by electrostatic discharge (ESD). Therefore, always

handle the electronic devices as indicated by the handout, the specifications in the

data sheet or other documentation.

20. Special Precautions during soldering practice

a. Hold the soldering iron away from your body. Don't point the iron towards you.

b. Don't use a spread solder on the board as it may cause short circuit.

c.Do not overheat the components as excess heat may damage the components/board.

 d. In case of burn or injury seek first aid available in the lab or at the college dispensary.

ECE Department MPMC Lab-PC455EC

MJCET Page 8

MUFFAKHAM JAH COLLEGE OF ENGINEERING &

TECHNOLOGY

BE ¾ Year V
th

 Semester ECE

Microprocessor and Microcontroller Lab

List of Experiments

PART A
[Experiments on assembly language programming for 8086 using Assembler]

1. Study and use of 8086 microprocessor trainer kit and execution of programs…..13

2. Programs using different addressing modes……………………………………...26

3. Multiplication and division using memory locations….…………………….……34

4. Multi byte binary and BCD addition and subtraction………………….…………40

5. Code conversions…………………………………………………………………48

6. String Searching and Sorting……………………………………………………..54

7. Generation of waveforms using DAC interface………………………………….63

PART B
[Experiments on assembly language programming for 8051 using Assembler]

8. Familiarity and use of 8051/8031 Microcontroller trainer kit and execution of

programs…………………………………………………………………………..75

9. Programs using different addressing modes………………………………………83

10. Interfacing 8051 with DAC to generate waveforms …………………..…………90

11. Interfacing traffic signal control using 8051……………………………………..97

12. Programs to control stepper motor using 8051.………………………………...103

ECE Department MPMC Lab-PC455EC

MJCET Page 9

PART A

[Experiments on assembly language programming for 8086 using Assembler]

 8086 Microprocessor pin diagram

ECE Department MPMC Lab-PC455EC

MJCET Page 10

8086 Instruction Set

Data Transfer Instructions:

MOV Move byte or word to register or memory

IN, OUT Input byte or word from port, output word to port

LEA Load effective address

LDS, LES Load pointer using data segment, extra segment

PUSH, POP Push word onto stack, pop word off stack

XCHG Exchange byte or word

XLAT Translate byte using look-up table

Logical Instructions:

NOT Logical NOT of byte or word (one's complement)

AND Logical AND of byte or word

OR Logical OR of byte or word

XOR Logical exclusive-OR of byte or word

TEST Test byte or word (AND without storing)

Shift and Rotate Instructions:

SHL, SHR Logical shift left, right byte or word by 1 or CL

SAL, SAR Arithmetic shift left, right byte or word by 1 or CL

ROL, ROR Rotate left, right byte or word by 1 or CL

RCL, RCR Rotate left, right through carry byte or word by 1 or CL

Arithmetic Instructions:

ADD, SUB Add, subtract byte or word

ADC, SBB Add, subtract byte or word and carry (borrow)

INC, DEC Increment, decrement byte or word

NEG Negate byte or word (two's complement)

CMP Compare byte or word (subtract without storing)

MUL, DIV Multiply, divide byte or word (unsigned)

IMUL, IDIV Integer multiply, divide byte or word (signed)

CBW, CWD Convert byte to word, word to double word (useful before multiply/divide)

Adjustments after arithmetic operations:

AAA, AAS, AAM, AAD ASCII adjust for addition, subtraction, multiplication, division

(ASCII codes 30-39)

DAA, DAS Decimal adjust for addition, subtraction (Binary coded decimal numbers)

Transfer Instructions:

JMP Unconditional jump (short 127/8, near 32K, far between segments)

Conditional jumps:

JA (JNBE) Jump if above (not below or equal) +127, -128 range only

JAE (JNB) Jump if above or equal (not below) +127, -128 range only

JB (JNAE) Jump if below (not above or equal) +127, -128 range only

JBE (JNA) Jump if below or equal (not above) +127, -128 range only

JE (JZ) Jump if equal (zero) +127, -128 range only

ECE Department MPMC Lab-PC455EC

MJCET Page 11

JG (JNLE) Jump if greater (not less or equal) +127, -128 range only

JGE (JNL) Jump if greater or equal (not less) +127, -128 range only

JL (JNGE) Jump if less (not greater nor equal) +127, -128 range only

JLE (JNG) Jump if less or equal (not greater) +127, -128 range only

JC, JNC Jump if carry set, carry not set +127, -128 range only

JO, JNO Jump if overflow, no overflow +127, -128 range only

JS, JNS Jump if sign, no sign +127, -128 range only

JNP (JPO) Jump if no parity (parity odd) +127, -128 range only

JP (JPE) Jump if parity (parity even) +127, -128 range only

Loop control:

LOOP Loop unconditional, count in CX, short jump to target address

LOOPE (LOOPZ) Loop if equal (zero), count in CX, short jump to target address

LOOPNE (LOOPNZ) Loop if not equal (not zero), count in CX, short jump to target

 address

JCXZ Jump if CX equals zero (used to skip code in loop)

Subroutine and Interrupt Instructions:

CALL, RET Call, return from procedure (inside or outside current segment)

INT, INTO Software interrupt, interrupt if overflow

IRET Return from interrupt

String Instructions:

MOVS Move byte or word string

MOVSB, MOVSW Move byte, word string

CMPS Compare byte or word string

SCAS Scan byte or word string (comparing to A or AX)

LODS, STOS Load, store byte or word string to AL or AX

Repeat instructions (placed in front of other string operations):

REP Repeat

REPE, REPZ Repeat while equal, zero

REPNE, REPNZ Repeat while not equal (zero)

Processor Control Instructions:

Flag manipulation:

STC, CLC, CMC Set, clear, complement carry flag

STD, CLD Set, clear direction flag

STI, CLI Set, clear interrupt enable flag

LAHF, SAHF Load AH from flags, store AH into flags

PUSHF, POPF Push flags onto stack, pop flags off stack

Coprocessor, multiprocessor interface:

ESC Escape to external processor interface

LOCK Lock bus during next instruction

ECE Department MPMC Lab-PC455EC

MJCET Page 12

Inactive states:

NOP No operation

WAIT Wait for TEST pin activity

HLT Halt processor

ECE Department MPMC Lab-PC455EC

MJCET Page 13

Experiment No: 1
Study & use of 8086 trainer kit and execution of programs

Central Processors:-

8086 or 8088 CPU operating at 5 MHz in maximum mode (supplied with 8086 CPU).

Co-Processor:-

Onboard 8087 Numeric Data Processor (optional).

Memory:-

 ESA 86/88E provides a total of 128K Bytes of onboard memory.

 64K Bytes of ROM using two 27256 EPROMs

 64K Bytes of RAM using two 62256 static RAMs

Memory Addressing:-

ESA 86/88E memory is arranged in odd and even banks of memory.

ESA 86/88E has four 28 pin JEDEC compatible slots labeled as U4-U7 for memory IC‟s.

Sockets U6 & U7 are populated with EPROM‟S 27256 (32k*2=64K Bytes) or 27512

(64K*2=128K Bytes) containing system firmware.

Sockets U4& U5 re populated with SRAM‟S 62256 (32k*2=64K Bytes). RAM area

starts from 0000H. However the RAM from 0000H to 1FFFH is used by the system for

interrupt vectors, stack and Assembler data tables. Thus user RAM area starts from

location 2000H onwards.

ECE Department MPMC Lab-PC455EC

MJCET Page 14

 Microprocessor 8086 Trainer kit

Memory Map:-

Memory Type Sockets Used Device Address Range

 EPROM U6 & U7 27256 F0000-FFFFF

 RAM U4 & U5 62256 00000-0FFFF

Optional battery backup provision is available for RAM using onboard 3.6V Ni-Cd cell.

ECE Department MPMC Lab-PC455EC

MJCET Page 15

System Timing:-

The time base for CPU operation is derived from an 8284A clock generator. The CPU

operates at a frequency of 5MHz, which is the output from the clock generator with 33%

duty cycle.

The clock generator also generates output signal at 2.5MHz pulse Clock with 50% duty

cycle.

CPU RESET:-

A 15MHz crystal is a clock source for the 8284A Clock generator. The 8284A divides the

frequency by thrice and produces a 5MHz clock with 33% duty cycle as required by

8086/8088. Further, 8284A provides a 2.5MHz pulse clock with 50% duty cycle which

can be used as a clock input for onboard peripherals.

Both these clock outputs are available on the bus connector and may be used as the

source clock frequency to external peripherals.

CPU Address Bus:-

Latches (74LS373‟s) at U15, U16, U17 are used to latch the address with the help of

ALE signal. As the CPU operates in the maximum mode, the 8288 bus controller is used

to decode the state signals and provide the entire control signal.

CPU Data Bus:-

Bi-Directional buffers (74LS245‟s) at U14, U21 & U27 used to buffer the CPU data bus.

Interrupt system:-

Hardware interrupts: -

External:-

The 8086/88 CPU supports two Hardware interrupts NMI and INTR.

NMI: 8086/88 Type 3 interrupt connected to KBINT on the trainer. The vectoring

information for this interrupt is fully user defined.

INTR: This line is left unconnected.

Internal:-

INT 3 can be used by user programs to return control to monitor.

Interrupt vector 1 (Single step interrupt) and 3 (Break point interrupt) reserved for

monitor.

Other internal interrupts are available to the user.

ECE Department MPMC Lab-PC455EC

MJCET Page 16

Onboard Peripherals & Interfacing options:-

8251A:- USART supporting standard baud rates from 110 to 19200. Baud rate is selected

through onboard DIP (Dual In-Line) switch settings.

8253:- Programmable interval Timer, Timer 0 is used for Baud clock generation. Timer 1

and Timer 2 are available to the user.

8255A:- 3 PPI, provides up to 72 programmable I/O lines. One 8255 is used for

controlling LCD and reading DIP switch. Two 8255‟s are for the user of which one is

populated by default and the other is optional.

8288:- Bus controller used for generating control signals in maximum mode operation.

8042/8742:- UPI (Universal Peripheral Interface) or 8274 adapter for PC Keyboard

interfacing.

External Interfacing Signals:-

CPU Bus:- De-multiplexed and fully buffered TTL compatible, address, data and control

signals available on a 50 pin ribbon cable connector.

Parallel I/O:- 48 programmable parallel I/O lines (TTL compatible) through two 26 pin

ribbon cable connector.

Serial I/O:- RS232 through onboard 9 pin D-type female connector.

PC keyboard DIN connector is provided for interfacing PC keyboard.

20x4 LCD:- 15 pin flow strip for interfacing the LCD.

Timer Signals:- Timer 1 & Timer 2 signals are brought to a header.

Power Supply:- +5V@950mA(approximately)

Battery Back-up:- 3.6V Ni-Cd battery for power back up to RAM (Optional).

mailto:+5V@950mA(approx.)

ECE Department MPMC Lab-PC455EC

MJCET Page 17

Commands used on ESA 86/88E

 Assemble command

 A 2000

 To come out of assembler command

 !

 To run program

 G 2000

 Examining/modifying memory location

 S result location/memory location

 Disassembly command

 Z 2000, ending address

 Stand Alone mode or Keyboard mode DIP 7  ON

 Serial Communication mode DIP 3, 4 & 7  ON

ECE Department MPMC Lab-PC455EC

MJCET Page 18

Simple Programs

Program 1: Write a program to add two 16-bit numbers using registers and place the

result in other register ignoring the possible overflow.

Algorithm:
1. Initialize two 16-bit data in registers
2. Add the data in registers

3. Store the result in some other register

4. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AX,1234h ; Load first 16-bit data in reg

 Mov DX,8765h ; Load second 16-bit data in other reg

 Add AX,DX ; Add two 16-bit regs

 Mov CX,AX ; Store the result

 Int 3 ; Halt

Result:

Input: AX = 1234h Output: AX = 9999h

 DX = 8765h CX = 9999h

ECE Department MPMC Lab-PC455EC

MJCET Page 19

Program 2: Write a program to subtract two 16-bit numbers using registers and place the

result in other register.

Algorithm:
1. Initialize two 16-bit data in registers

2. Subtract the data in registers
3. Store the result in some other register

4. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AX,9876h ; Load first 16-bit data in reg

 Mov DX,1234h ; Load second 16-bit data in other reg

 Sub AX,DX ; Subtract two 16-bit regs

 Mov CX,AX ; Store the result

 Int 3 ; Halt

Result:

Input: AX = 9876h Output: AX = 8642h

 DX = 1234h CX = 8642h

ECE Department MPMC Lab-PC455EC

MJCET Page 20

Program 3(a): Write a program to multiply two 8-bit numbers using registers and place

the result in other registers.

Algorithm:
1. Initialize two 8-bit data in registers
2. Multiply the data in registers

3. Store the result in some other register

4. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AL,03h ; Load 8-bit multiplicand in reg

 Mov CL,05h ; Load 8-bit multiplier in other reg

 Mul CL ; Multiply two 8-bit regs

 Mov DL,AL ; Store the result

 Int 3 ; Halt

Result:

Input: AL = 03h Output: AL = 0Fh

 CL = 05h DL = 0Fh

ECE Department MPMC Lab-PC455EC

MJCET Page 21

Program 3(b): Write a program to multiply two 16-bit numbers using registers and place

the result in other registers.

Algorithm:
1. Initialize two 16-bit data in registers

2. Multiply the data in registers
3. Store the result in some other register

4. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AX,006fh ; Load 16-bit multiplicand in reg

 Mov DX,0061h ; Load 16-bit multiplier in other reg

 Mul DX ; Multiply two 16-bit regs

 Mov CX,AX ; Store the result

 Int 3 ; Halt

Result:

Input: AX = 006Fh Output: AX = 2A0Fh

 DX = 0061h CX = 2A0Fh

ECE Department MPMC Lab-PC455EC

MJCET Page 22

Program 4(a): Write a program to divide two 8-bit numbers using registers and place the

result in other registers.

Algorithm:
1. Initialize two 8-bit data in registers
2. Divide the data in registers

3. Store the result in some other register

4. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AH,00h ; Clear AH reg

 Mov AL,43h ; Load 8-bit dividend in reg

 Mov CL,08h ; Load 8-bit divisor in other reg

 Div CL ; Divide two 8-bit regs

 Int 3 ; Halt

Result:

Input: AL = 43h Output: AX = 0308h

 CL = 08h

Q = AL = 08h

R = AH = 03h

ECE Department MPMC Lab-PC455EC

MJCET Page 23

Program 4(b): Write a program to divide two 16-bit numbers using registers and place the

result in other registers.

Algorithm:
1. Initialize two 16-bit data in registers
2. Divide the data in registers

3. Store the result in some other register

4. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov DX,0000h ; Clear DX reg

 Mov AX,0045h ; Load 16-bit dividend in reg

 Mov CX,0008h ; Load 16-bit divisor in other reg

 Div CX ; Divide two 8-bit regs

 Int 3 ; Halt

Result:

Input: AX = 0045h Output: AX = 0008h

 CX = 0008h DX = 0005h

DX = 0005h & AX = 0008h

Q = AX = 0008h

R = DX = 0005h

ECE Department MPMC Lab-PC455EC

MJCET Page 24

Program 5: Write a program to add two 8-bit decimal numbers using registers.

Algorithm:
1. Initialize two 8-bit data in registers

2. Add the data in registers
3. Convert hex data into decimal data

4. Store the result in some other register

5. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AL,07h ; Load first 8-bit data in reg

 Mov DL,15h ; Load second 8-bit data in other reg

 Add AL,DL ; Add two 8-bit regs

 Daa ; Decimal adjust after addition

 Mov CL,AL ; Store the result

 Int 3 ; Halt

Result:

Input: AL = 07h Output: AL = 22D

 DL = 15h CL = 22D

ECE Department MPMC Lab-PC455EC

MJCET Page 25

Program 6: Write a program to subtract two 8-bit decimal numbers using registers.

Algorithm:
1. Initialize two 8-bit data in registers

2. Subtract the data in registers

3. Convert hex data into decimal data
4. Store the result in some other register

5. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AL,32h ; Load first 8-bit data in reg

 Mov DL,19h ; Load second 8-bit data in other reg

 Sub AL,DL ; Subtract two 8-bit regs

 Das ; Decimal adjust after subtraction

 Mov CL,AL ; Store the result

 Int 3 ; Halt

Result:

Input: AL = 32h Output: AL = 13D

 DL = 19h CL = 13D

ECE Department MPMC Lab-PC455EC

MJCET Page 26

EXPERIMENT- 2

Programs using different addressing modes

Addressing modes defines the way of representing the data in registers or memory

locations. The different addressing modes in 8086 microprocessor are as follows:

1. IMMEDIATE ADDRESSING MODE:

In this type of addressing immediate data is a part of instruction, and appears in the form

of successive byte or bytes.

EX: Mov AX,1234h

 Mov BX,ABCDh

 Mov CL, 08h

 Mov DH, 12h

In the above example, 1234h is the immediate data. The immediate data may be 8-bit or

16-bit in size.

2. DIRECT ADDRESSING MODE:

In the direct addressing mode, a 16-bit memory address (offset) is directly specified in

the instruction as a part of it.

EX: Mov AL, [3000h]

 Mov AH, [3100h]

In the above example, the data stored in the memory location 3000h is moved into AX

register that is, the contents of memory location 3000h is stored in AL and the contents of

memory location 3001h is stored in AH.

3. REGISTER ADDRESSING MODE:

In register addressing mode, the data is stored in a register and it is referred using the

particular register. All the registers, except IP (instruction pointer) may be used.

EX: Mov BX, AX

In the above example, a 16-bit data which is there in AX register is moved into BX

register. Both the source and destination are registers only.

ECE Department MPMC Lab-PC455EC

MJCET Page 27

4. REGISTER INDIRECT ADDRESSING MODE:

Sometimes, the address of the memory location which contains data or operand is

determined in an indirect way using the offset registers. This mode of addressing is

known as register indirect addressing mode. In this addressing mode, the offset address of

the data is in either BX or SI or DI registers. The data is supposed to be available at the

address pointed to by the content of any of the above registers.

EX: Mov AL, [BX]

 Mov AL, [SI]

 Mov AL, [DI]

In the above example, the data stored in the memory location pointed by BX register is

moved into AX register.

5. INDEXED ADDRESSING MODE:

In this addressing mode, offset of the operand is stored in one of the indexed registers

that is, SI or DI. This mode is a special case of the above discussed register indirect

addressing mode.

EX: Mov AL, [SI]

 Mov BL, [DI]

Here the data is available in an offset address stored in SI or DI.

6. Register Relative:

In this addressing mode, the data is available at an effective address formed by adding an

8-bit or 16-bit displacement with the content of any one of the registers BX, BP, SI and

DI in the default (either DS or ES) segment. The example given before explains this

mode.

Ex: MOV AX, 50h [BX]

Here, effective address is given as 10h*DS + 50h + [BX].

7. Based Indexed: The effective address of data is formed, in this addressing mode, by

adding content of a base register (any one of BX or BP) to the content of an index register

(any one of SI or DI). The default segment register may be ES or DS.

Ex: MOV AX, [BX] [SI]

ECE Department MPMC Lab-PC455EC

MJCET Page 28

Here, BX is the base register and SI is the index register. The effective address is

computed as 10h*DS + [BX] + [SI].

8. Relative Based Indexed: The effective address is formed by adding an 8-bit or 16-bit

displacement with the sum of contents of any one of the base registers (BX or BP) and

any one of the index registers, in a default segment.

Ex: MOV AX, 50h [BX] [SI]

Here, 50h is an immediate displacement, BX is a base register and SI is an index register.

The effective address of data is computed as

10h*DS+ [BX] + [SI] + 50h

ECE Department MPMC Lab-PC455EC

MJCET Page 29

PROGRAM-7: Write an 8086 program to copy a 16-bit value into the register or

memory location using different addressing modes.

Algorithm:
1. Immediate data is moved in some register (Immediate addressing
mode)

2. Initialize the data in a register & move it to some other register
(Register addressing mode)

3. Initialize the address by using any pointer register, place the data in
Acc register & move it from register to the pointer address indirectly

(Register indirect addressing mode)
4. Initialize the address by using only index pointer register, place the

data in Acc register & move it from register to the pointer address
(Indexed addressing mode)

5. End the program

Source Code:

Immediate: Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AX,1234h ; Load immediate data in AX reg

 Int 3 ; Halt

Register: Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AX,9876h ; Load immediate data in AX reg

 Mov BX,AX ; Move data in other reg

 Int 3 ; Halt

Register indirect: Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov BX,4000h ; Initialize the pointer BX

 Mov AX, 6789h ; Load immediate data in AX reg

 Mov [BX], AL ; Move AL value to location pointed by BX

 Mov DL, [BX] ; Move the value indirectly to DL reg

 Int 3 ; Halt

ECE Department MPMC Lab-PC455EC

MJCET Page 30

Indexed: Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,4000h ; Initialize the pointer reg SI

 Mov AX, 4321h ; Load immediate data in AX reg

 Mov [SI], AL ; Move AL value to location pointed by SI

 Mov DL, [SI] ; Move the value indirectly to DL reg

 Int 3 ; Halt

ECE Department MPMC Lab-PC455EC

MJCET Page 31

PROGRAM-8: Write an 8086 program to copy 35h into memory locations 4000h to

4004h using register indirect addressing mode using:

a) Without a loop and b) With a loop

Algorithm:
1. Initialize the pointer with a memory location

2. Initialize the register with data which has to be moved
3. Move the data from register to the pointer location

4. Increment the pointer and move the data to the pointer location for ‘n’
times (without a loop) & initialize the counter and repeat the loop for

‘n’ times (with a loop)

5. End the program

Source Code:

a) Without a loop:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,4000h ; Initialize the pointer

 Mov AL,35h ; Load the data in AL reg

 Mov [SI], AL ; Move the data from AL to pointer location

 Inc SI ; Increment the pointer

 Mov [SI], AL ; Repeat the process „n‟ times

 Inc SI

 Mov [SI], AL

 Inc SI

 Mov [SI], AL

 Inc SI

 Mov [SI], AL

 Int 3 ; Halt

Result:

Input: AL – 35h Output: 4000 – 35h

 4001 – 35h

 4002 – 35h

 4003 – 35h

 4004 – 35h

ECE Department MPMC Lab-PC455EC

MJCET Page 32

b) With a loop:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI, 4000h ; Initialize the pointer

 Mov AL, 35h ; Load the data in AL reg

 Mov CL,05h ; Initialize the count

 BACK: Mov [SI], AL ; Move the data from AL to pointer location

 Inc SI ; Increment the pointer

 Loop BACK ; Repeat the process „n‟ times

 Int 3 ; Halt

Result:

Input: AL – 35h Output: 4000 – 35h

 4001 – 35h

 4002 – 35h

 4003 – 35h

 4004 – 35h

ECE Department MPMC Lab-PC455EC

MJCET Page 33

PROGRAM-9: Write a program to move a source data block starting at address location

3000h to a destination block whose address is 4000h. The length of the source block is in

CX register.

Algorithm:
1.Initialize the source pointer, destination pointer & a counter register

2.Move the data from source pointer register to the Acc register
3.Move the data from Acc register to the destination pointer location

4.Increment both the pointer registers
5.Repeat the loop for ‘n’ times

6.End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,3000h ; Initialize the source pointer

 Mov DI,4000h ; Initialize the destination pointer

 Mov CX,0008h ; Initialize the count

 BACK:Mov AL,[SI] ; Move data from source location to AL reg

 Mov [DI],AL ; Move the data from AL to dstn pointer

 Inc SI ; Increment the source pointer

 Inc DI ; Increment the destination pointer

 Loop BACK ; Repeat the process „n‟ times

 Int 3 ; Halt

Result:

Input: 3000 01h Output: 4000 01h

 3001 02h 4001 02h

 3002 03h 4002 03h

 3003 04h 4003 04h

 3004 05h 4004 05h

 3005 06h 4005 06h

 3006 07h 4006 07h

 3007 08h 4007 08h

ECE Department MPMC Lab-PC455EC

MJCET Page 34

EXPERIMENT- 3

Multiplication and Division using memory locations

PROGRAM- 10: Write an 8086 program to multiply two 8-bit numbers i.e.,

multiplicand and multiplier which are present in the memory locations 3000h and 3001h

respectively. Store the result in the memory locations 4000h and 4001h.

Algorithm:
1. Initialize the source pointer & destination pointer with a memory

location
2. Move the multiplicand stored in source pointer location in lower byte

of Acc register
3. Increment the source pointer memory location

4. Move the multiplier stored in source pointer location in lower byte of
other register

5. Multiply the data of both registers
6. Store the lower byte of the result in destination location, increment

the destination pointer & store the upper byte of the result in
destination location

7. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

Mov SI, 3000h ; Initialize the source pointer

Mov DI, 4000h ; Initialize the destination pointer

Mov AX, 0000h ; Clear AX reg

Mov BX, 0000h ; Clear BX reg

Mov AL, [SI] ; Move multiplicand to AL reg

Inc SI ; Increment source pointer

Mov BL, [SI] ; Move multiplier to BL reg

Mul BL ; Multiply

Mov [DI], AL ; Store lower byte result in dstn loc

Inc DI ; Increment destination pointer

Mov [DI], AH ; Store higher byte result in dstn loc

Int 3 ; Halt

Result:

Input: 3000 12h Output: 4000 A8h

 3001 34h 4001 03h

ECE Department MPMC Lab-PC455EC

MJCET Page 35

PROGRAM- 11: Write an 8086 program to multiply two 16-bit numbers i.e.

multiplicand in 3000h and 3001h and multiplier in 3002h and 3003h respectively. Store

the result in memory locations 4000h to 4003h.

Algorithm:
1.Initialize the source pointer & destination pointer with a memory

location
2.Move the multiplicand stored in source pointer location in Acc

register
3.Increment the source pointer memory location

4.Move the multiplier stored in source pointer location in other register
5.Multiply the data of both registers

6.Store the lower word of the result in destination location, increment
the destination pointer & store the upper word of the result in

destination location

7.End the program

Source Code:

 Output 2500ad ; Linker version command

Org 2000h ; Starting address

Mov SI, 3000h ; Initialize the source pointer

Mov DI, 4000h ; Initialize the destination pointer

Mov AX, 0000h ; Clear AX reg

Mov BX, 0000h ; Clear BX reg

Mov DX,0000h ; Clear DX reg

Mov AL, [SI] ; Move multiplicand to AX reg

Inc SI

Mov AH, [SI]

Inc SI ; Increment source pointer

Mov BL, [SI] ; Move multiplier to BX reg

Inc SI

Mov BH, [SI]

Mul BX ; Multiply

Mov [DI], AL ; Store lower word in dstn loc

Inc DI

Mov [DI], AH

ECE Department MPMC Lab-PC455EC

MJCET Page 36

Inc DI ; Increment destination pointer

Mov [DI], DL ; Store higher word in dstn loc

Inc DI

Mov [DI], DH

Int 3 ; Halt

Result:

Input: 3000 34h Output: 4000 E8h

3001 12h 4001 DEh

 3002 22h 4002 37h

 3003 11h 4003 01h

ECE Department MPMC Lab-PC455EC

MJCET Page 37

PROGRAM- 12: Write an 8086 program to divide two 8-bit numbers i.e. dividend and

divisor which are present in the memory locations 3000h and 3001h respectively. Store

the result in memory locations 4000h and 4001h i.e. in 4000h store the quotient and in

4001h store the remainder.

Algorithm:
1.Initialize the source pointer & destination pointer with a memory

location
2.Move the dividend stored in source pointer location in lower byte of

Acc register
3.Increment the source pointer memory location

4.Move the divisor stored in source pointer location in lower byte of
other register

5.Divide the data of both registers
6.Store the lower byte of the result in destination location, increment

the destination pointer & store the upper byte of the result in
destination location

7.End the program

Source Code:

 Output 2500ad ; Linker version command

Org 2000h ; Starting address

Mov SI, 3000h ; Initialize the source pointer

Mov DI, 4000h ; Initialize the destination pointer

Mov AX, 0000h ; Clear AX reg

Mov BX, 0000h ; Clear BX reg

Mov AL, [SI] ; Move dividend to AL reg

Inc SI ; Increment source pointer

Mov BL, [SI] ; Move divisor to BL reg

Div BL ; Divide

Mov [DI], AL ; Store quotient in dstn loc

Inc DI ; Increment destination pointer

Mov [DI], AH ; Store remainder in destination loc

Int 3 ; Halt

Result:

Input: 3000 ABh Output: 4000 09h

 3001 12h 4001 09h

ECE Department MPMC Lab-PC455EC

MJCET Page 38

PROGRAM- 13: Write an 8086 program to divide two 16-bit numbers i.e. dividend in

3000h and 3001h and divisor in 3002h and 3003h respectively. Store the result in

memory locations 4000h to 4003h i.e. store quotient in the memory locations 4000h and

4001h and remainder in 4002h and 4003h.

Algorithm:
1.Initialize the source pointer & destination pointer with a memory

location
2.Move the dividend stored in source pointer location in Acc register

3.Increment the source pointer memory location
4.Move the divisor stored in source pointer location in other register

5.Divide the data of both registers
6.Store the lower word of the result in destination location, increment

the destination pointer & store the upper word of the result in
destination location

7.End the program

Source Code:

 Output 2500ad ; Linker version command

Org 2000h ; Starting address

Mov SI, 3000h ; Initialize the source pointer

Mov DI, 4000h ; Initialize the destination pointer

Mov AX, 0000h ; Clear AX reg

Mov BX, 0000h ; Clear BX reg

Mov DX,0000h ; Clear DX reg

Mov AL, [SI] ; Move dividend to AX reg

Inc SI

Mov AH, [SI]

Inc SI ; Increment source pointer

Mov BL, [SI] ; Move divisor to BX reg

Inc SI

Mov BH, [SI]

Div BX ; Divide

Mov [DI], AL ; Store quotient in dstn loc

Inc DI

Mov [DI], AH

ECE Department MPMC Lab-PC455EC

MJCET Page 39

Inc DI ; Increment destination pointer

Mov [DI], DL ; Store remainder in dstn loc

Inc DI

Mov [DI], DH

Int 3 ; Halt

Result:

Input: 3000 76h Output: 4000 08h

 3001 98h 4001 00h

 3002 34h 4002 D6h

 3003 12h 4003 06h

ECE Department MPMC Lab-PC455EC

MJCET Page 40

EXPERIMENT- 4

Multi byte binary and BCD addition and subtraction

Program 14: Write an ALP for adding two multi byte binary numbers. The two strings of

binary numbers starts from memory location 3100h & 3110h respectively. The result is

stored from memory location 3120h onwards.

Algorithm:
1.Initialize the source pointers & destination pointer & a counter

2.Clear Acc register
3.Move the data stored in first source location to Acc register

4.Add with carry the data in Acc register with the data in second
source pointer location

5.Place the sum in destination location
6.Increment the pointers & repeat the process till the count becomes

zero

7.End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,3100h ; Initialize the first source pointer

 Mov DI,3110h ; Initialize the second source pointer

 Mov BX,3120h ; Initialize the result location

 Mov CX,0004h ; Initialize the count

 Xor AX,AX ; Clear AX reg

 BACK:Mov AL,[SI] ; Move the data from SI to AL reg

 Adc AL,[DI] ; Add with cy the data in DI with AL

 Mov [BX],AL ; Store the sum in result location

 Inc SI ; Increment SI

 Inc DI ; Increment DI

 Inc BX ; Increment BX

 Loop BACK ; Repeat the process till CX=0

 Int 3 ; Halt

 Org 3100h

 Db 76h, 14h, 29h, 11h

 Org 3110h

 Db 14h, 27h, 10h, 45h

ECE Department MPMC Lab-PC455EC

MJCET Page 41

Result: 3120 8Ah

 3121 3Bh

 3122 39h

 3123 56h

ECE Department MPMC Lab-PC455EC

MJCET Page 42

Program 15: Write an ALP for subtracting two multi byte binary numbers. The two

strings of binary numbers starts from memory location 3100h & 3110h respectively. The

result is stored from memory location 3120h onwards.

Algorithm:
1. Initialize the source pointers & destination pointer & a counter

2. Clear Acc register
3. Move the data stored in first source location to Acc register

4. Subtract with barrow the data in Acc register with the data in
second source pointer location

5. Place the difference in destination location
6. Increment the pointers & repeat the process till the count becomes

zero

7. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,3100h ; Initialize the first source pointer

 Mov DI,3110h ; Initialize the second source pointer

 Mov BX,3120h ; Initialize the result location

 Mov CX,0004h ; Initialize the count

 Xor AX,AX ; Clear AX reg

 BACK:Mov AL,[SI] ; Move the data from SI to AL reg

 Sbb AL,[DI] ; Sub with cy the data in DI with AL

 Mov [BX],AL ; Store the difference in result location

 Inc SI ; Increment SI

 Inc DI ; Increment DI

 Inc BX ; Increment BX

 Loop BACK ; Repeat the process till CX=0

 Int 3 ; Halt

 Org 3100h

 Db 11h, 29h, 13h, 56h

 Org 3110h

 Db 80h, 16h, 41h, 31h

ECE Department MPMC Lab-PC455EC

MJCET Page 43

Result: 3120 91h

 3121 12h

 3122 D2h

 3123 24h

ECE Department MPMC Lab-PC455EC

MJCET Page 44

Program 16: Write an ALP for adding two multi byte BCD numbers. The two strings of

BCD numbers starts from memory location 3100h & 3110h respectively. The result is

stored from memory location 3120h onwards.

Algorithm:
1.Initialize the source pointers & destination pointer & a counter

2.Clear Acc register
3.Move the data stored in first source location to Acc register

4.Add with carry the data in Acc register with the data in second
source pointer location

5.Convert the binary value into its BCD equivalent
6.Place the sum in destination location

7.Increment the pointers & repeat the process till the count becomes
zero

8.End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,3100h ; Initialize the first source pointer

 Mov DI,3110h ; Initialize the second source pointer

 Mov BX,3120h ; Initialize the result location

 Mov CX,0004h ; Initialize the count

 Xor AX,AX ; Clear AX reg

 BACK:Mov AL,[SI] ; Move the data from SI to AL reg

 Adc AL,[DI] ; Add with cy the data in DI with AL

 Daa ; Dacimal adjust after addition

 Mov [BX],AL ; Store the sum in result location

 Inc SI ; Increment SI

 Inc DI ; Increment DI

 Inc BX ; Increment BX

 Loop BACK ; Repeat the process till CX=0

 Int 3 ; Halt

 Org 3100h

 Db 76h, 14h, 29h, 11h

 Org 3110h

 Db 14h, 27h, 10h, 45h

ECE Department MPMC Lab-PC455EC

MJCET Page 45

Result: 3120 90d

 3121 41d

 3122 39d

 3123 56d

ECE Department MPMC Lab-PC455EC

MJCET Page 46

Program 17: Write an ALP for subtracting two multi byte BCD numbers. The two strings

of BCD numbers starts from memory location 3100h & 3110h respectively. The result is

stored from memory location 3120h onwards.

Algorithm:
1. Initialize the source pointers & destination pointer & a counter

2. Clear Acc register
3. Move the data stored in first source location to Acc register

4. Subtract with barrow the data in Acc register with the data in
second source pointer location

5. Convert the binary value into its BCD equivalent
6. Place the difference in destination location

7. Increment the pointers & repeat the process till the count becomes
zero

8. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,3100h ; Initialize the first source pointer

 Mov DI,3110h ; Initialize the second source pointer

 Mov BX,3120h ; Initialize the result location

 Mov CX,0004h ; Initialize the count

 Xor AX,AX ; Clear AX reg

 BACK:Mov AL,[SI] ; Move the data from SI to AL reg

 Sbb AL,[DI] ; Sub with cy the data in DI with AL

 Das ; Dacimal adjust after subtraction

 Mov [BX],AL ; Store the difference in result location

 Inc SI ; Increment SI

 Inc DI ; Increment DI

 Inc BX ; Increment BX

 Loop BACK ; Repeat the process till CX=0

 Int 3 ; Halt

 Org 3100h

 Db 11h, 29h, 13h, 56h

 Org 3110h

 Db 80h, 16h, 41h, 31h

ECE Department MPMC Lab-PC455EC

MJCET Page 47

Result: 3120 31d

 3121 12d

 3122 72d

 3123 24d

ECE Department MPMC Lab-PC455EC

MJCET Page 48

Experiment No: 5

Code Conversions

Program 18: Write an ALP to convert the contents of memory location 3100h into an

ASCII character. The 3100h location contains a single Hex digit (4 MSB is zero). Store

the ASCII equivalent in memory location 3200h.

Algorithm:
1. Initialize the source pointer & destination pointer registers
2. Compare the data with 0Ah

3. If it is <0Ah, add 30h else add 37h
4. Store the result in destination pointer register

5. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,3100h ; Initialize the source pointer

 Mov DI,3200h ; Initialize the destination pointer

 Mov AX,0000h ; Clear AX reg

 Mov AL,[SI] ; Move the hex data from SI to AL reg

 Cmp AL,0Ah ; Compare it with 0AH

 Jc AHEAD ; Jump if cy=1 to AHEAD

 Add AL,‟A‟-„9‟-1 (or) Add AL,07h ; Add 07H to AL reg

 AHEAD:Add AL,30h ; Add 30H to AL reg

 Mov [DI],AL ; Store the result in dest ptr location

 Int 3 ; Halt

 Org 3100h

 Db 09h

Result: 3200h 39h

ECE Department MPMC Lab-PC455EC

MJCET Page 49

Program 19: Write an ALP to convert the contents of memory location 3100h from

ASCII to an equivalent Hexadecimal number. Place the result at memory location 3200h.

Algorithm:
1. Initialize the source pointer & destination pointer registers

2. Subtract 30h from the input data
3. Compare the value with 09h

3. If it is >09h, subtract 07h else do nothing
4. Store the result in destination pointer register

5. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,3100h ; Initialize the source pointer

 Mov DI,3200h ; Initialize the destination pointer

 Mov AX,0000h ; Clear AX reg

 Mov AL,[SI] ; Move the hex data from SI to AL reg

 Sub AL,30h ; Subtract 30H from AL reg

 Cmp AL,09h ; Compare value of AL reg with 09H

 Jg AHEAD ; Jump if AL>09H to AHEAD

 Jmp DONE ; Jump DONE

 AHEAD:Sub AL,07h ; Subtract 07H from AL reg

 DONE:Mov [DI],AL ; Store the result in dest ptr location

 Int 3 ; Halt

 Org 3100h

 Db 43h

Result: 3200h 0Ch

ECE Department MPMC Lab-PC455EC

MJCET Page 50

Program 20: Write an ALP to convert 2 digit packed BCD number into its Binary

equivalent number. Packed 2 digit number is stored in memory location 3100h & place

the result at memory location 3200h.

Algorithm:
1. Initialize the source pointer & destination pointer registers

2. Split the packed BCD into two unpacked BCD digits BCD1 & BCD2
3. Multiply BCD2 by 10 i.e., 0ah

4. Add BCD1 to the answer in step 2
5. Store the result in destination location

6. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,3100h ; Initialize the source pointer

 Mov DI,3200h ; Initialize the destination pointer

 Mov AL,[SI] ; Move the data from SI to AL reg

 And AL,0Fh ; Mask the upper nibble of AL reg

 Mov DL,AL ; Save BCD1 in DL reg

 Mov AL,[SI] ; Move the data from SI to AL reg again

 And AL,0F0h ; Mask the lower nibble of AL reg

 Mov CL,04h ; Initialize the count

 Ror AL,CL ; Rotate right AL CL times to get BCD2

 Mov BL,0Ah ; Move 0AH to BL reg

 Mul BL ; Multiply it with BCD2

 Add AL,DL ; Add it with BCD1

 Mov [DI],AL ; Store the result in dest ptr location

 Int 3 ; Halt

 Org 3100h

 Db 69h

Result: 3200 45h

ECE Department MPMC Lab-PC455EC

MJCET Page 51

Program 21: Write an ALP to convert Binary number into its 2 digit packed BCD

number. The binary number is stored in memory location 2100h & place the result at

memory location 2200h.

Algorithm:
1. Initialize the source pointer & destination pointer registers

2. Divide the value with 0Ah
3. Rotate the quotient 4 times & add it with remainder

4. Store the result in destination location

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,2100h ; Initialize the source pointer

 Mov DI,2200h ; Initialize the destination pointer

 Mov AX,0000h ; Clear AX reg

 Mov AL,[SI] ; Move the data from SI to AL reg

 Mov BL, 0Ah ; Move 0AH to BL reg

 Div BL ; Divide AL with BL

 Mov CL,04h ; Initialize the count

 Rol AL,CL ; Rotate left quotient CL times

 Or AL,AH ; Add it with remainder

 Mov [DI],AL ; Store the result in dest ptr location

 Int 3 ; Halt

 Org 2100h

 Db 45h

Result: 2200 69d

ECE Department MPMC Lab-PC455EC

MJCET Page 52

Program 22: Write an ALP to convert decimal number into its equivalent 7-segment

conversion using XLAT instruction. The 7-segment codes are stored in memory as a

lookup table starting from 2100h (use common cathode codes) for 7-segment display.

Algorithm:
1. Initialize the source pointer & destination pointer registers

2. Save the source location address in BX register
3. Take the input in AL register

4. Convert the decimal value into 7-segment code
5. Store the result in destination location

6. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,2100h ; Initialize the source pointer

 Mov DI,2200h ; Initialize the destination pointer

 Mov BX,SI ; Copy the source address in BX reg

 Mov AL,05h ; Move the input data in AL reg

 Xlat ; Translate byte in AL from lookup table

 Mov [DI],AL ; Store the result in dest ptr location

 Int 3 ; Halt

 Org 2100h

 Db 3fh, 06h, 5bh, 4fh, 66h, 6dh, 7dh,

 07h, 7fh, 6fh

Result: 2200 6dh

ECE Department MPMC Lab-PC455EC

MJCET Page 53

Program 23: Write an ALP to convert temperature from degree centigrade into degree

Fahrenheit using C=5/9*(F-32).
F=9C/5+32  F=9C/5+20h

Algorithm:
1. Initialize the source pointer & destination pointer registers

2. Multiply the input with 09h
3. Divide it with 05h & add with 20h

4. Store the result in destination location
5. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,2100h ; Initialize the source pointer

 Mov DI,2200h ; Initialize the destination pointer

 Mov AL,[SI] ; Move the data from SI to AL reg

 Mov BL,09h ; Move 09H to BL reg

 Mul BL ; Multiply AL with BL regs

 Mov CL,05h ; Initialize CL reg

 Div CL ; Divide AL with CL reg

 Add AL,20h ; Add it with 20H

 Mov [DI],AL ; Store the result in dest ptr location

 Int 3 ; Halt

 Org 2100h

 Db 05h

Result: 2200 29h

ECE Department MPMC Lab-PC455EC

MJCET Page 54

EXPERIMENT- 6

String Searching and Sorting

Program 24: Copy a list of characters from one memory location to other using string

manipulation instructions. The Source string starts from 2100h onwards & the destination

string begins from 2200h.

Algorithm:
1. Initialize the source pointer, destination pointer & counter registers

2. Clear direction flag

3. Move string byte from source location to destination location
4. Repeat the process till the count becomes zero

5. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov CX, 0Bh ; Initialize the count

 Mov SI, 2100h ; Initialize the source pointer

 Mov DI, 2200h ; Initialize the destination pointer

 Cld ; Clear direction flag

 Rep ; Repeat till CX=00H

 Movsb ; Move string byte from scr ptr to dest ptr

 Int 3 ; Halt

 Org 2100h

 Db „ELECTRONICS‟

Result 2200: ‟ELECTRONICS‟

Command to display a string  D 2200, 220B

ECE Department MPMC Lab-PC455EC

MJCET Page 55

Program 25: To search for a character in the given string & store 00h if it is present in

memory location 2100h.

Algorithm:
1. Initialize the source pointer, destination pointer & counter registers

2. Move the string byte which has to be searched in AL register
3. Clear direction flag

3. Scan string byte from source location with the value in AL register
4. Repeat the process till the value becomes equal or count becomes

zero
5. Store the result in destination location

6. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov SI,2100h ; Initialize the destination pointer

 Mov DI,2200h ; Initialize the source pointer

 Mov CX,000Ah ; Initialize the count

 Mov AL,45h (Ascii equivalent of „E‟); Move 45H to AL reg

 Cld ; Clear direction flag

 Repne ; Repeat if AL=!45H

 Scasb ; Scan string byte

 Jne Exit ; Jump if AL!=45H when CX=00H

 Mov AL,00h or Mov byte ptr [SI],00h in S.M; Move 00H in AL reg

 Mov [SI],AL ; Store the result in dest ptr location

 Exit: Int 3 ; Halt

 Org 2200h

 Db „ABCDEFGHIJ‟

Result: 2100 00h

ECE Department MPMC Lab-PC455EC

MJCET Page 56

Program 26: Write an 8086 ALP that exchanges two blocks of data stored in memory

using the string instructions of 8086. This program exchanges 0F bytes from 0:3000h and

0:3200h onwards.

Algorithm:
1. Initialize the source pointer, destination pointer & counter registers

2. Clear direction flag
3. Move string byte from source location to destination location

4. Repeat the process till the count becomes zero to move first string
in dummy location

5. Repeat the steps 1-4 to move second string in the location of first
string

6. Repeat the steps 1-4 to move first string from dummy location to
second string location

5. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov BX,3000h ; Move first string address to BX reg

 Mov DX,3200h ; Move second string address to DX reg

 Mov AX,3500h ; Move dummy string address to AX reg

 Mov SI,BX ; Initialize the source pointer

 Mov DI,AX ; Initialize the destination pointer

 Mov CX,000Fh ; Initialize the count

 Cld ; Clear direction flag

 Rep ; Repeat till CX=00H

 Movsb ; Move string byte from scr ptr to dest ptr

 Mov SI,DX ; Initialize the source pointer

 Mov DI,BX ; Initialize the destination pointer

 Mov CX,000Fh ; Initialize the count

 Cld ; Clear direction flag

 Rep ; Repeat till CX=00H

 Movsb ; Move string byte from scr ptr to dest ptr

 Mov SI,AX ; Initialize the source pointer

 Mov DI,DX ; Initialize the destination pointer

ECE Department MPMC Lab-PC455EC

MJCET Page 57

 Mov CX,000Fh ; Initialize the count

 Cld ; Clear direction flag

 Rep ; Repeat till CX=00H

 Movsb ; Move string byte from scr ptr to dest ptr

 Int 3 ; Halt

 Org 3000h

 Db „ABCD…………..O‟

 Org 3200h

 Db „QRST……………E‟

D 3000,300E

D 3200,320E

Result:

3000 „QRSTUVWXYZABCDE‟

3200 „ABCDEFGHIJKLMNO‟

ECE Department MPMC Lab-PC455EC

MJCET Page 58

Title: - Ascending order using bubble sort, a set of unsigned numbers.

Approach Methodology:

Let us say, we want to arrange the numbers 34,78,56,47 in ascending order using bubble

sort algorithm.

We compare first two elements i.e., 34 and 78. Since 34<78, the two numbers are in

proper order.

Next, compare the 2
nd

 and 3
rd

 elements i.e., 78 and 56, since they are not in order, the

elements are interchanged. Now the elements of the vector appear as 34,56,78,47.

Next we compare the 3
rd

 and last element i.e. 78 and 47. Since they are not in order they

are interchanged. Thus the largest element of the unsorted vector is placed in the correct

position. Now, the elements of the vector appear as 34, 56, 47 | 78 where the elements

after „|‟ are sorted in ascending order.

Therefore, in 3 passes the sorting is completed.

After 2
nd

 pass, the elements of the vector are 34, 47 | 56, 78.

After 3
rd

 pass, the elements of the vector are 34 | 47, 56, 78.

In General it needs (n-1) passes when „n‟ elements are to be sorted.

ECE Department MPMC Lab-PC455EC

MJCET Page 59

Program 27: Write an ALP to sort an array of unsigned binary numbers in ascending

order. The array begins at memory location 2100h.

Algorithm:
Description: Here A is an unsorted array having N elements.

1. Repeat For J = 1 to N

2. Repeat For K = 1 to N-J

3. If (A[K] > A[K+1]) Then

4. Interchange A[K] and A[K+1]

 [End of If]

 [End of Step 2 For Loop]

 [End of Step 1 For Loop]

5. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov BX,0Ah ; Move the no of elements in BX reg

 Dec BX ; Decrement BX reg

 OUTLUP:Mov CX,BX ; Place the count in CX reg

 Mov SI,2100h ; Initialize the source pointer

 INLUP:Mov AL,[SI] ; Move the data from SI to AL reg

 Inc SI ; Increment SI

 Cmp AL,[SI] ; Compare the data in SI with AL reg

 Jb NEXT ; Jump if AL<[SI] to NEXT

 Xchg AL,[SI] ; Exchange the data

 Dec SI ; Decrement SI

 Mov [SI],AL ; Move AL data to SI location

 Inc SI ; Increment SI

 NEXT:Loop INLUP ; Repeat the INLUP till CX=0

 Dec BX ; Decrement BX reg

 Jnz OUTLUP ; Jump if BX!=0 to OUTLUP

 Int 3 ; Halt

 Org 2100h

 Db 10h,42h,11h,05h,01h,79h,34h,67h,02h,12h

ECE Department MPMC Lab-PC455EC

MJCET Page 60

Result: 2100 01h

2101 02h

2102 05h

2103 10h

2104 11h

2105 12h

2106 34h

2107 42h

2108 67h

2109 79h

ECE Department MPMC Lab-PC455EC

MJCET Page 61

Program 28: Write an ALP to sort an array of unsigned binary numbers in descending

order. The array begins at memory location 2100h.

Algorithm:
Description: Here A is an unsorted array having N elements.

1. Repeat For J = 1 to N

2. Repeat For K = 1 to N-J

3. If (A[K] < A[K+1]) Then

4. Interchange A[K] and A[K+1]

 [End of If]

 [End of Step 2 For Loop]

 [End of Step 1 For Loop]

5. End the program

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov BX,0Ah ; Move the no of elements in BX reg

 Dec BX ; Decrement BX reg

 OUTLUP:Mov CX,BX ; Place the count in CX reg

 Mov SI,2100h ; Initialize the source pointer

 INLUP:Mov AL,[SI] ; Move the data from SI to AL reg

 Inc SI ; Increment SI

 Cmp AL,[SI] ; Compare the data in SI with AL reg

 Jg NEXT ; Jump if AL>[SI] to NEXT

 Xchg AL,[SI] ; Exchange the data

 Dec SI ; Decrement SI

 Mov [SI],AL ; Move AL data to SI location

 Inc SI ; Increment SI

 NEXT:Loop INLUP ; Repeat the INLUP till CX=0

 Dec BX ; Decrement BX reg

 Jnz OUTLUP ; Jump if BX!=0 to OUTLUP

 Int 3 ; Halt

 Org 2100h

 Db 10h,42h,11h,05h,01h,79h,34h,67h,02h,12h

ECE Department MPMC Lab-PC455EC

MJCET Page 62

Result: 2100 79h

2101 67h

2102 42h

2103 34h

2104 12h

2105 11h

2106 10h

2107 05h

2108 02h

2109 01h

ECE Department MPMC Lab-PC455EC

MJCET Page 63

Experiment No: 7

Generation of Waveforms Using DAC Interface Module

AIM: To write and execute programs in 8086 for interfacing a DAC module with ESA

86/88E Microprocessor trainer kit.

APPARATUS:

1. Microprocessor kit

2. Dual channel DAC interface unit

3.26 pin connector cable

4. Power supply unit

5. CRO

DISCRIPTION: To use DAC, initialize 8255 for mode 0 operation with a port A and port

B as output. Output data on the appropriate ports and observe the output waveform at X

out and Y out of DAC using CRO.

 The 16 bit port addresses of 8255 PPI low map on even bus available at J4 connector are:

PORT A EQU FFE0H

PORT B EQU FFE2H

PORT C EQU FFE4H

CWR EQU FFE6H

Hardware Details of DAC Interface Circuit:

The Dual DAC interface can be used to generate different waveforms using ESA 86/88E

Microprocessor kit.

There are two 8 bit digital to analog converters provided based on DAC 0800.

The digital inputs to these DACs are provided through PORT A & PORT B of 8255 used

as output ports.

The analog outputs from the DACs are given to OPAMPS (µ741) which act as current to

voltage converters.

The outputs from the DACs vary between 0 to 5V corresponding values between 00 to

FF hex.

ECE Department MPMC Lab-PC455EC

MJCET Page 64

Different waveforms can be observed at the OPAMP outputs depending upon the digital

input patterns.

Description of the Circuit:

The Dual DAC circuit uses only 17 lines from 26 pin connector cable.

PORT A & PORT B of 8255 PPI are used as output ports. The digital inputs to DACs are

connected to the inverting inputs of OPAMPs (µ741).

The outputs from the OPAMPs are connected to points marked X out & Y out at which

the waveforms are observed on CRO.

PORT A is used to control X out & PORT B controls Y out.

ECE Department MPMC Lab-PC455EC

MJCET Page 65

 Program 29: Write an 8086 ALP to generate up-going saw-tooth waveform.

Algorithm:
1. Initialize the 8255 in mode 0 & all ports as output ports

2. Initialize AL with 00h
3. Send the data to the ports A & B through AL register

4. Increment AL
5. Repeat the steps 3 & 4 for the generation of continuous waveform

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AL,80h ; Initialize 8255 in mode 0

 Mov DX,0FFE6h ; & all the ports

 Out DX,AL ; as output ports

 Mov AL,00h ; Move 00H to AL reg

 BACK:Mov DX,0FFE0h ; Move port A addr to DX reg

 Out DX,AL ; Send AL value through port A

 Mov DX,0FFE2h ; Move port A addr to DX reg

 Out DX,AL ; Send AL value through port B

 Inc AL ; Increment AL reg

 Jmp BACK or Jmp short BACK for S.M; Repeat

Result: The output waveform is observed on CRO & amplitude and time period is

measured.

ECE Department MPMC Lab-PC455EC

MJCET Page 66

Program 30: Write an 8086 ALP to generate down-going saw-tooth waveform.

Algorithm:
1. Initialize the 8255 in mode 0 & all ports as output ports

2. Initialize AL with FFh
3. Send the data to the ports A & B through AL register

4. Decrement AL
5. Repeat the steps 3 & 4 for the generation of continuous waveform

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AL,80h ; Initialize 8255 in mode 0

 Mov DX,0ffe6h ; & all the ports

 Out DX,AL ; as output ports

 Mov AL,0FFh ; Move FFH to AL reg

 BACK:Mov DX,0FFE0h ; Move port A addr to DX reg

 Out DX,AL ; Send AL value through port A

 Mov DX,0FFE2h ; Move port A addr to DX reg

 Out DX,AL ; Send AL value through port B

 Dec AL ; Decrement AL reg

 Jmp BACK ; Repeat

Result: The output waveform is observed on CRO & amplitude and time period is

measured.

ECE Department MPMC Lab-PC455EC

MJCET Page 67

Program 31: Write an 8086 ALP to generate triangular waveform.

Algorithm:
1. Initialize the 8255 in mode 0 & all ports as output ports

2. Initialize AL with 00h
3. Send the data to the ports A & B through AL register

4. Increment AL
5. Repeat the steps 3 & 4 for the generation of up-going saw-tooth

waveform
6. Repeat the steps 2-5 with AL = FFh & decrementing AL for the

generation of down-going saw-tooth
7. Repeat the steps 2-6 for the generation of continuous waveform
Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AL,80h ; Initialize 8255 in mode 0

 Mov DX,0FFE6h ; & all the ports

 Out DX,AL ; as output ports

 Mov AL,00h ; Move 00H to AL reg

 UP:Mov DX,0FFE0h ; Move port A addr to DX reg

 Out DX,AL ; Send AL value through port A

 Mov DX,0FFE2h ; Move port B addr to DX reg

 Out DX,AL ; Send AL value through port B

 Inc AL ; Increment AL

 Cmp AL,0FFh ; Compare value of AL with FFH

 Jb UP ; Jump if AL<FFH to UP

 DOWN:Mov DX,0FFE0h ; Move port A addr to DX reg

 Out DX,AL ; Send AL value through port A

 Mov DX,0FFE2h ; Move port B addr to DX reg

 Out DX,AL ; Send AL value through port B

 Dec AL ; Decrement AL reg

 Cmp AL,00h ; Compare value of AL with 00H

 Ja DOWN ; Jump if AL>00H to DOWN

 Jmp UP ; Repeat

Result: The output waveform is observed on CRO & amplitude and time period is

measured.

ECE Department MPMC Lab-PC455EC

MJCET Page 68

Program 32: Write an 8086 ALP to generate symmetrical square waveform.

Algorithm:
1. Initialize the 8255 in mode 0 & all ports as output ports

2. Initialize AL with 00h
3. Send the data to the port A through AL register & provide the delay

4. Make AL = FFh, send it through port A & provide the delay
5. Repeat the steps 2-4 for the generation of continuous waveform

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AL,80h ; Initialize 8255 in mode 0

 Mov DX,0FFE6h ; & all the ports

 Out DX,AL ; as output ports

 BACK:Mov AL,00h ; Move 00H to AL reg

 Mov DX,0FFE0h ; Move port A addr to DX reg

 Out DX,AL ; Send AL value through port A

 Mov CX,0FFh ; Initialize the count

 DLY1:Loop DLY1 ; Provide delay till CX=0

 Mov AL,0FFh ; Move FFH to AL reg

 Mov DX,0FFE0h ; Move port A addr to DX reg

 Out DX,AL ; Send AL value through port A

 Mov CX,0FFh ; Initialize the same count

 DLY2:Loop DLY2 ; Provide delay till CX=0

 Jmp BACK ; Repeat

Result: The output waveform is observed on CRO & amplitude and time period is

measured.

ECE Department MPMC Lab-PC455EC

MJCET Page 69

Program 33: Write an 8086 ALP to generate up-going staircase waveform containing 5

steps.

Algorithm:
1. Initialize the 8255 in mode 0 & all ports as output ports

2. Initialize AL with 00h
3. Add 33h to AL & send the data to the port A through AL register &

provide the delay
4. Compare AL with FFh & Repeat the steps 2 & 3 for the generation of

continuous waveform

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AL,80h ; Initialize 8255 in mode 0

 Mov DX,0FFE6h ; & all the ports

 Out DX,AL ; as output ports

 Mov AL,00h ; Move 00H to AL reg

 RPT:Add AL,33h ; Add 33H to AL reg

 Mov DX,0FFE0h ; Move port A addr to DX reg

 Out DX,AL ; Send AL value through port A

 Mov CX,0FFh ; Initialize the count

 DLY1:Loop DLY1 ; Provide delay till CX=00H

 Cmp AL,0FFh ; Compare AL with FFH

 Jnz RPT ; Jump if AL!=00H to RPT

 Inc AL ; Increment AL reg

 Mov DX,0FFE0h ; Move port A addr to DX reg

 Out DX,AL ; Send AL value through port A

 Mov CX,0FFh ; Initialize the count

 DLY2:Loop DLY2 ; Provide delay till CX=00H

 Jmp RPT ; Repeat

Result: The output waveform is observed on CRO & amplitude and time period is

measured.

ECE Department MPMC Lab-PC455EC

MJCET Page 70

Program 34: Write an 8086 ALP to generate down-going staircase waveform containing

5 steps.

Algorithm:
1. Initialize the 8255 in mode 0 & all ports as output ports

2. Initialize AL with FFh
3. Subtract 33h from AL & send the data to the port A through AL

register & provide the delay
4. Compare AL with 00h & Repeat the steps 2 & 3 for the generation of

continuous waveform

Source Code:

 Output 2500ad ; Linker version command

 Org 2000h ; Starting address

 Mov AL,80h ; Initialize 8255 in mode 0

 Mov DX,0FFE6h ; & all the ports

 Out DX,AL ; as output ports

 Mov AL,0FFh ; Move FFH to AL reg

 RPT:Sub AL,33h ; Subtract 33H from AL reg

 Mov DX,0FFE0h ; Move port A addr to DX reg

 Out DX,AL ; Send AL value through port A

 Mov CX,0FFh ; Initialize the count

 DLY1:Loop DLY1 ; Provide delay till CX=00H

 Cmp AL,00h ; Compare AL with 00H

 Jnz RPT ; Jump if AL!=00H to RPT

 Dec AL ; Decrement AL reg

 Mov DX,0FFE0h ; Move port A addr to DX reg

 Out DX,AL ; Send AL value through port A

 Mov CX,0FFh ; Initialize the count

 DLY2:Loop DLY2 ; Provide delay till CX=00H

 Jmp RPT ; Repeat

Result: The output waveform is observed on CRO & amplitude and time period is

measured.

ECE Department MPMC Lab-PC455EC

MJCET Page 71

PART B

[Experiments on assembly language programming for 8051 using Assembler]

 8051 Microcontroller pin diagram

ECE Department MPMC Lab-PC455EC

MJCET Page 72

8051 Instruction Set

ARITHMETIC OPERATIONS:

ADD A,Rn Add register to Accumulator

ADD A,direct Add direct byte to Accumulator

ADD A,@Ri Add indirect RAM to Accumulator

ADD A,#data Add immediate data to Accumulator

ADDC A,Rn Add register to Accumulator with Carry

ADDC A,direct Add direct byte to Accumulator with Carry

ADDC A,@Ri Add indirect RAM to Accumulator with Carry

ADDC A,#data Add immediate data to Acc with Carry

SUBB A,Rn Subtract Register from Acc with borrow

SUBB A,direct Subtract direct byte from Acc with borrow

SUBB A,@Ri Subtract indirect RAM from ACC with borrow

SUBB A,#data Subtract immediate data from Acc with borrow

INC A Increment Accumulator

INC Rn Increment register

INC direct Increment direct byte

INC @Ri Increment direct RAM

DEC A Decrement Accumulator

DEC Rn Decrement Register

DEC direct Decrement direct byte

DEC @Ri Decrement indirect RAM

INC DPTR Increment Data Pointer

MUL AB Multiply A & B

DIV AB Divide A by B

DA A Decimal Adjust Accumulator

LOGICAL OPERATIONS:

ANL A,Rn AND Register to Accumulator

ANL A,direct AND direct byte to Accumulator

ANL A,@Ri AND indirect RAM to Accumulator

ANL A,#data AND immediate data to Accumulator

ANL direct,A AND Accumulator to direct byte

ANL direct,#data AND immediate data to direct byte

ORL A,Rn OR register to Accumulator

ORL A,direct OR direct byte to Accumulator

ORL A,@Ri OR indirect RAM to Accumulator

ORL A,#data OR immediate data to Accumulator

ORL direct,A OR Accumulator to direct byte

ORL direct,#data OR immediate data to direct byte

XRL A,Rn Exclusive-OR register to Accumulator

XRL A,direct Exclusive-OR direct byte to Accumulator

XRL A,@Ri Exclusive-OR indirect RAM to Accumulator

ECE Department MPMC Lab-PC455EC

MJCET Page 73

XRL A,#data Exclusive-OR immediate data to Accumulator

XRL direct,A Exclusive-OR Accumulator to direct byte

XRL direct,#data Exclusive-OR immediate data to direct byte

CLR A Clear Accumulator

CPL A Complement Accumulator

RL A Rotate Accumulator Left

RLC A Rotate Accumulator Left through the Carry

RR A Rotate Accumulator Right

RRC A Rotate Accumulator Right through the Carry

SWAP A Swap nibbles within the Accumulator

DATA TRANSFER:

MOV A,Rn Move register to Accumulator

MOV A,direct Move direct byte to Accumulator

MOV A,@Ri Move indirect RAM to Accumulator

MOV A,#data Move immediate data to Accumulator

MOV Rn,A Move Accumulator to register

MOV Rn,direct Move direct byte to register

MOV Rn,#data Move immediate data to register

MOV direct,A Move Accumulator to direct byte

MOV direct,Rn Move register to direct byte

MOV direct,direct Move direct byte to direct

MOV direct,@Ri Move indirect RAM to direct byte

MOV direct,#data Move immediate data to direct byte

MOV @Ri,A Move Accumulator to indirect RAM

MOV @Ri,direct Move direct byte to indirect RAM

MOV @Ri,#data Move immediate data to indirect RAM

MOV DPTR,#data16 Load Data Pointer with a 16-bit constant

MOVC A,@A+DPTR Move Code byte relative to DPTR to Acc

MOVC A,@A+PC Move Code byte relative to PC to Acc

MOVX A,@Ri Move External RAM (8- bit addr) to Acc

MOVX A,@DPTR Move Exernal RAM (16- bit addr) to Acc

MOVX @Ri,A Move Acc to External RAM (8-bit addr)

MOVX @DPTR,A Move Acc to External RAM (16-bit addr)

PUSH direct Push direct byte onto stack

POP direct Pop direct byte from stack

XCH A,Rn Exchange register with Accumulator

XCH A,direct Exchange direct byte with Accumulator

XCH A,@Ri Exchange indirect RAM with Accumulator

XCHD A,@Ri Exchange low-order Digit indirect RAM with Acc

BOOLEAN VARIABLE MANIPULATION:

CLR C Clear Carry

CLR bit Clear direct bit

ECE Department MPMC Lab-PC455EC

MJCET Page 74

SETB C Set Carry

SETB bit Set direct bit

CPL C Complement Carry

CPL bit Complement direct bit

ANL C,bit AND direct bit to CARRY

ANL C,/bit AND complement of direct bit to Carry

ORL C,bit OR direct bit to Carry

ORL C,/bit OR complement of direct bit to Carry

MOV C,bit Move direct bit to Carry

MOV bit,C Move Carry to direct bit

JC rel Jump if Carry is set

JNC rel Jump if Carry not set

JB bit,rel Jump if direct Bit is set

JNB bit,rel Jump if direct Bit is Not set

JBC bit,rel Jump if direct Bit is set & clear bit

PROGRAM BRANCHING:

ACALL addr11 Absolute Subroutine Call

LCALL addr16 Long Subroutine Call

RET Return from Subroutine

RETI Return from interrupt

AJMP addr11 Absolute Jump

LJMP addr16 Long Jump

SJMP rel Short Jump (relative addr)

JMP @A+DPTR Jump indirect relative to the DPTR

JZ rel Jump if Accumulator is Zero

JNZ rel Jump if Accumulator is Not Zero

CJNE A,direct,rel Compare direct byte to Acc and Jump if Not Equal

CJNE A,#data,rel Compare immediate to Acc and Jump if Not Equal

CJNE Rn,#data,rel Compare immediate to register and Jump if Not Equal

CJNE @Ri,#data,rel Compare immediate to indirect and Jump if Not Equal

DJNZ Rn,rel Decrement register and Jump if Not Zero

DJNZ direct,rel Decrement direct byte and Jump if Not Zero

NOP No Operation

***Source: Atmel 8051 Microcontrollers Hardware Manual

ECE Department MPMC Lab-PC455EC

MJCET Page 75

Experiment No: 8

Familiarity and use of 8051/8031 Microcontroller trainer kit and execution of

programs

Main features of ESA 31 (8031 based):

ESA 31 can be operated either from onboard keyboard or from a CRT terminal through

its RS 232-C interface.

Keyboard and serial monitor programs support the entry of users program, editing, debug

facilities like breakpoints, single stepping & full execution of user programs.

1-pass Assembler can assemble any memory resident assembly language program.

1-pass Dis-assembler disassembles the object code into standard INTEL mnemonics.

Total of 120KB memory is provided of which 64KB of memory is program memory and

56KB of memory is data memory.

The monitor of the trainer occupies 32KB out of 64KB of program memory.

Standard bus compatible signals available on the bus connector for easy expansion.

ECE Department MPMC Lab-PC455EC

MJCET Page 76

 Microcontroller 8051 Trainer kit

SPECIFICATIONS:

Microcontroller: 8031/8051 operated at 11.0592 MHz

Memory: Four 28-pin JEDEC sockets offer 120KB of memory as follows:

32KB of firmware in one 27256 (Program memory)

32KB of SRAM using one 62256 (User program memory)

56KB of SRAM as data memory using two 62256

ECE Department MPMC Lab-PC455EC

MJCET Page 77

The memory map is as follows:

DEVICE ADDRESS RANGE TYPE OF MEMORY

27256 0000-7FFF Program memory

62256 8000-FFFF User program memory

62256 0000-7FFF User data memory

62256 8000-FFFF User data memory

The dip switch settings for either mode of operation are as follows:

For Hexadecimal keypad mode : All switches in OFF position.

For Serial mode : Switches 1 and 4 in ON position.

KEYBOARD MONITOR

In the keyboard mode, the user enters the commands and data by pressing the appropriate

keys on the keypad. Responses are displayed by the system on the seven-digit 7-segment

LED display.

The RESET key causes a hardware reset and restarts the monitor. The monitor displays

the sign-on message – ESA 51 across the address & data fields of the display.

KEYBOARD & DISPLAY

The display consists of 7 seven segment LED displays, separated into three fields. The

leftmost single digit forms the special field. Next four digits form the address field.

Note: Address can be 256B or 64KB max.

Last two digits form the data field.

The 36-key keypad consists of the following group of keys.

A) Hex pad – 16 keys representing hex digits 0 through F.

B) Command Group – 13 command keys.

C) Memory Group – 4 keys (PRGMEM, EXTDATA, BITMEM, INT DATA) to select

the type of memory.

D) System Operation keys – RESET, BREAK, and EXEC keys

BREAK can be used to stop the execution without affecting the register contents.

ECE Department MPMC Lab-PC455EC

MJCET Page 78

MONITOR COMMANDS

The keyboard monitor is capable of executing fifteen individual commands.

 EXAMINE/MODIFY MEMORY

Displays/modifies the contents of a memory location:

Syntax Format:

EXAM MEM {PRG MEM/EXT DATA/BIT MEM/INT DATA}

Addr1 NEXT [[[data] NEXT/PREV]….] EXEC

After pressing EXAM MEM key, enter the type of memory by pressing PRGMEM,

EXTDATA, BITMEM, or INTDATA key.

A dot appears at the last digit of the address field indicating that an address entry is

required.

Enter the memory address of the byte to be examined. (Memory address is evaluated

modulo 64K if it is program memory or data memory and modulo 256 if it is internal data

memory or bit memory).

The value is displayed in the address field of the display.

 EXAMINE/MODIFY REGISTER

This command is used to examine and optionally modify the contents of some of the

8031/8051‟s registers.

EXAM REG [reg key] [[Data] NEXT/PREV]….] EXEC

Note: When any of the registers R0-R7 has to be examined, press EXAMREG key and

then BITMEM key. Now, press keys 0-7 on the hex keypad which corresponds to

registers R0-R7.

The displayed registers contents of R0-R7 is w.r.t the current bank selected.

 GO COMMAND:

Is used to transfer control of the system from the monitor to the user‟s program.

GO [Starting addr] EXEC

ECE Department MPMC Lab-PC455EC

MJCET Page 79

To abort execution of user program, press „RESET‟ key. By doing so, all registers

information about user program is lost. In any case, contents of the user portion of the

RAM area are not altered by the monitor.

There are two ways to break the user program execution.

a) Set breakpoints at specific addresses and enable them.

b) Press „BREAK‟ key.

If BREAK key is pressed, control returns to the monitor which saves all the registers and

displays the address where the program broke and the data at that address on the display.

It displays U on the special field of 7-segment display.

ECE Department MPMC Lab-PC455EC

MJCET Page 80

Execution of simple programs using ESA-31 in keyboard mode:

35. Write a program in 8051 to add two 16-bit numbers. The numbers are 3CE7H and

3B8DH. Place the sum in registers R7 and R6; R6 has the lower byte.

Algorithm:
1. Initialize the first lower byte in Acc register & add it with second

lower byte
2. Store the lower sum in R6 register

3. Take the first upper byte in Acc register & add it with second upper
byte along with carry

4. Store the upper byte of the result in R7 register

4. End the program

Source Code:

Address OBJECT Code Mnemonic

8000 C3 CLR C

8001 74 E7 MOV A, #0E7H

8003 24 8D ADD A,#8DH

8005 FE MOV R6,A

8006 74 3C MOV A,#3CH

8008 34 3B ADDC A,#3BH

800A FF MOV R7,A

800B 80 FE HERE:SJMP HERE

(Relative address = Target address – PC contents)

Enter the codes using the format given below.

<EXAMMEM><PRGMEM> 8000 <NXT> DATA <NXT>…..<NXT>EXEC

Note: After executing the program using GO<8000>EXEC press „BREAK‟ key.

 Press EXAMREG key twice to check result in registers R6 and R7 respectively.

Format:

<EXAMREG><EXAMREG><BITMEM>6<NEXT><NEXT>

ECE Department MPMC Lab-PC455EC

MJCET Page 81

36. Write an 8051 program to multiply two unsigned 8-bit binary numbers. The numbers

are stored in memory locations 8050h and 8051h. Store the result in 8060h and 8061h.

Algorithm:
1. Initialize the pointer DPTR & save the multiplier in B reg

2. Again initialize the pointer DPTR & take the multiplicand in Acc
register

3. Multiply two 8-bit data
4. Store the result in the respective memory locations

4. End the program

 Sample data: (8050)= 41h (65)10

 (8051)= 08h

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#8051h ; Initialize DPTR

 MOVX A,@DPTR ; Multiplier in A reg

 MOV 0F0h,A ; Save Multiplier in B reg

 MOV DPTR,#8050h ; Initialize DPTR

 MOVX A,@DPTR ; Multiplicand in A reg

 MUL AB ; Multiply

 MOV DPTR,#8060h ; Store the result

 MOVX @DPTR,A ; in respective memory locations

 INC DPTR

 MOV A,0F0h

 MOVX @DPTR,A

 HERE:SJMP HERE ; End the program

Result: (8060)= 08h

 (8061)= 02h

i.e., 65X8 = (520)10 = 0208h

ECE Department MPMC Lab-PC455EC

MJCET Page 82

37. Write an 8051 program to divide the number in 8050h by the number in 8051h.Store

the quotient and remainder in 8060h & 8061h of data memory respectively.

Algorithm:
1. Initialize the pointer DPTR & save the divisor in B reg

2. Again initialize the pointer DPTR & take the dividand in Acc register
3. Divide two 8-bit data

4. Store the result in the respective memory locations

4. End the program

 Sample data: (8050) =41h Dividend

 (8051)=08h Divisor

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#8051h ; Initialize DPTR

 MOVX A,@DPTR ; Multiplier in A reg

 MOV 0F0h,A ; Save Multiplier in B reg

 MOV DPTR,#8050h ; Initialize DPTR

 MOVX A,@DPTR ; Multiplicand in A reg

 DIV AB ; Multiply

 MOV DPTR,#8060h ; Store the result

 MOVX @DPTR,A ; in respective memory locations

 INC DPTR

 MOV A,0F0h

 MOVX @DPTR,A

 HERE:SJMP HERE ; End the program

Result : (8060) =08h Quotient

 (8061)=01h Reminder

ECE Department MPMC Lab-PC455EC

MJCET Page 83

Experiment No: 9

Programs using different addressing modes

38. Write an 8051 program to copy the value 55H into RAM memory locations 40H to

44H using

A) Direct addressing mode

B) Register addressing mode without using Loop and

C) With Loop

Algorithm:
1. Initialize the data in Acc register & copy it directly in the memory

location for direct addressing mode
2. Initialize the data in Acc register which has to be moved

3. Move the data from Acc register to the pointer location
4. Repeat the process by incrementing the pointer for ‘n’ times

(without a loop) & initialize the counter & repeat the loop foe ‘n’ times
(with a loop)

5. End the program

Source Code:

 A) Using direct addressing mode

 ORG 8000H ; Starting address

 MOV A,#55h ; Move the immediate data in A reg

 MOV 40h,A ; Copy A to RAM Locations

 MOV 41h,A

 MOV 42h,A

 MOV 43h,A

 MOV 44h,A

 HERE:SJMP HERE ; End the program

ECE Department MPMC Lab-PC455EC

MJCET Page 84

 B) Using reg-indirect addressing mode without loop

 ORG 8000H ; Starting address

MOV A,#55h ; Move the immediate data in A reg

 MOV R0,#40h ; Initialize the pointer R0

 MOV @R0,A ; Move data from A reg to R0 location

 INC R0 ; Increment the pointer

 MOV @R0,A

 INC R0

 MOV @R0,A

 INC R0

 MOV @R0,A

 INC R0

 MOV @R0,A

 HERE:SJMP HERE ; End the program

C) With Loop

 ORG 8000H

 MOV A,#55h ; Move the immediate data in A reg

 MOV R0,#40h ; Initialize the pointer R0

 MOV R2,#05h ; Initialize the counter

 AGAIN:MOV @R0,A ; Move data from A reg to R0 location

 INC R0 ; Increment R0

 DJNZ R2,AGAIN ; Decrement & jump if R2!=0 to AGAIN

 HERE:SJMP HERE ; End the program

ECE Department MPMC Lab-PC455EC

MJCET Page 85

39. Six bytes of data are stored in memory locations starting at 50H. Add all the bytes.

Use register R7 to save any carries generated. Store the sum at memory locations 60H &

61H.

Algorithm:
1. Initialize the source pointer & counter registers

2. Clear Acc & the register to save carry
3. Add the data in Acc register with data in source pointer location

4. Check the carry flag i.e., if cy=1 then increment the register else
repeat steps 3 & 4 till count becomes zero

5. Store the result in the desired memory locations

6. End the program

 Sample data: (50)=10h, (51)=25h, (52)=2AH, (53)=4Fh, (54)=60h,

 (55)=3Fh

Source Code:

 ORG 8000H ; Starting address

 MOV R0,#50h ; Initialize pointer R0

 MOV R2,#06h ; Initialize the counter R2

 CLR A ; Initial sum=0

 MOV R7,A ; Clear R7 to save carry

 AGAIN:ADD A,@R0 ; Add data at R0 with A reg

 JNC NEXT ; Jump if cy=0 to NEXT

 INC R7 ; Keep track of carries

 NEXT: INC R0 ; Increment pointer

 DJNZ R2,AGAIN ; Decrement & jump if R2!=0 to AGAIN

 MOV 60h,A ; Store LSBy of sum

 MOV 61h,R7 ; Store MSBy of sum

 HERE:JMP HERE ; End the program

 Result = (60)=4Dh

 (61)=01h (MS byte) ; 014Dh

 Format: For entering, executing & Checking results.

ECE Department MPMC Lab-PC455EC

MJCET Page 86

Enter source code

 <EXM MEM> <PRG MEM> 8000 <NXT> DATA <NXT>……. <EXEC>

Feed Sample Data

<EXM MEM> <INTDATA> 50 <NXT> DATA <NXT> DATA…….. <EXEC>

 <EXM MEM> <INTDATA> 60 <NXT>00XT>00<EXEC>

 Run the Program

 <GO><8000> <EXEC>

 Reset

 Check Results

 <EXM MEM> <INT DATA> 60 <NXT>….

ECE Department MPMC Lab-PC455EC

MJCET Page 87

40. Write an 8051 program to copy a block of 10 bytes of data from RAM locations

starting at 35h to RAM locations starting at 60h.

Algorithm:
1. Initialize the source pointer, destination pointer & a counter register

2. Move the data from source pointer register to the Acc register
3. Move the data from Acc register to the destination pointer location

4. Increment both the pointer registers
5. Repeat the loop for ‘n’ times

6. End the program

 Sample Prob

 Source block
 (35)=10h, (36) =20h, (37) = 30h, (38) = 40h, (39) = 50h,

 (3A) = 60h, (3B) = 70h, (3C) = 80h, (3D) = 90h, (3E) =A0h

Source Code:

 ORG 8000H ; Starting address

 MOV R0,#35h ; Source pointer

 MOV R1,#60h ; Destination pointer

 MOV R3,#0Ah ; Counter

 BACK:MOV A,@R0 ; Move data from R0 to A reg

 MOV @R1,A ; Move data from A reg to R0 location

 INC R0 ; Increment R0

 INC R1 ; Increment R1

 DJNZ R3,BACK ; Decrement & jump if R3!=0 to BACK

 HERE:SJMP HERE ; End the program

Result: (60)=10h, (61) =20h, (62) = 30h, (63) = 40h, (64) = 50h,

 (65) = 60h, (66) = 70h, (67) = 80h, (68) = 90h, (69) =A0h

ECE Department MPMC Lab-PC455EC

MJCET Page 88

41. A byte is stored in register R0. Write an 8051 Program to find the number of 1‟s in a

byte stored in R0 and Store the number of 1‟s in register R2.

Algorithm:
1. Initialize Acc register with the byte for which number of ones has to

be counted & counter register
2. Rotate the byte one bit left with carry & check the carry flag

3. If cy=1 then increment result register
else decrement the count by 1 & repeat the steps 2 & 3 till the

count becomes zero

4. End the program

Source Code:

 Let R0 = AAh i.e., 10101010

 ORG 8000H ; Starting address

 MOV R0,#AAh ; Move data in R0

 MOV A,R0 ; Take it in A reg

 MOV R2,#00h ; Clear R2 reg

 MOV R1,#08h ; Initialize the counter R1

 LOOP:RLC A ; Rotate left with cy

 JNC CONT ; Jump if cy=0 to CONT

 INC R2 ; Increment R2

 CONT:DJNZ R1,LOOP ; Decrement & jump if R1!=0 to LOOP

 HERE:SJMP HERE ; End the program

Result: R2=04h

ECE Department MPMC Lab-PC455EC

MJCET Page 89

42. Write an 8051 program to find the number 64h from the set of five readings starting

from address location 50H to 54h. If present store 00h in R0, otherwise store FFh in R0.

Algorithm:
1. Initialize the source pointer & counter register

2. Compare the byte in source pointer location with the byte which has
to be searched

3. If both the bytes are equal, store 00h in desired register else repeat
steps 2 & 3 till the count becomes zero

4. If the byte is not found, store FFh in desired register

5. End the program

Sample Problem (1):

 (50) =76h, (51) =45h, (52) =64h, (53) =25h, (54) =22h

Source Code:

 ORG 8000H ; Starting address

 MOV R1,#50h ; Initialize the source pointer R1

 MOV R2,#05h ; Initialize the counter R2

 LOOP:CJNE @R1,#64H,CONT ; Compare & jump not equal to CONT

 MOV R0,#00h ; Store 00H in R0 reg

 HERE1:SJMP HERE1 ; End the program

 CONT:INC R1 ; Increment R1 reg

 DJNZ R2,LOOP ; Decrement & jump if R2!=0 to LOOP

 MOV R0,#FFh ; Store FFH in R0 reg

 HERE2:SJMP HERE2 ; End the program

Result = (R0) = 00h

Sample prob (2)

 Replace data in (52) by 94h

 Result = (R0) = FFh

ECE Department MPMC Lab-PC455EC

MJCET Page 90

Experiment No: 10

Interfacing 8051 with DAC to generate waveforms

AIM: To write and execute program in 8051 assembly language for interfacing a DAC

interface module with ESA 31 microcontroller trainer kit.

APPARATUS:

1. ESA 31 Microcontroller trainer kit

2. Dual channel DAC module

3. Power supply units

4. 26 Pin connector cable

5. CRO

DESCRIPTION:

To use DAC, initialize 8255A for mode 0 operation with port A and port B as output.

Output data on the appropriate port and observe output wave form at Xout and Yout of

the DAC using CRO.

The 16 bit port addresses for 8255A available at J2 connector are:

 Port A Equ E800H

 Port B Equ E801H

 Port C Equ E802H

 Port D Equ E803H

Note: Port A controls Xout and Port B controls Yout of DAC interface module.

PROGRAMS:

 Write an ALP to generate Saw tooth (Up-going and Down-going)

 Write an ALP to generate Triangular waveform

 Write an ALP to generate Symmetrical Square wave

 Write an ALP to generate

 Up-going stair case with 5 steps

 Down-going stair case with 5 steps

ECE Department MPMC Lab-PC455EC

MJCET Page 91

; Assume the DAC interface is connected over J2 of the ESA 31 trainer.

 ORG 8000H

 PORT_A EQU E800H

 PORT_B EQU E801H

 PORT_C EQU E802H

 CWR EQU E803H

43. Program to generate Continuous up going saw tooth.

Algorithm:
1. Initialize 8255 in mode 0 & all ports as output ports

2. Initialize A with 00h
3. Send the data to the ports A & B through A register

4. Increment A
5. Repeat the steps 3 & 4 for the generation of continuous waveform

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 CLR A ; Start with value 00H

 AGAIN:MOV DPTR, #0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

 INC DPTR ; Increment DPTR

 MOVX @DPTR,A ; Out to Port B

 INC A ; Increment DAC input

 SJMP AGAIN ; Repeat forever

Result: The output waveform is observed on CRO & amplitude and time period is

measured.

ECE Department MPMC Lab-PC455EC

MJCET Page 92

44. Program to generate continuous down going saw tooth

Algorithm:
1. Initialize 8255 in mode 0 & all ports as output ports

2. Initialize A with FFh
3. Send the data to the ports A & B through A register

4. Decrement A
5. Repeat the steps 3 & 4 for the generation of continuous waveform

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 MOV A,#0FFH ; Start with value FFH

 AGAIN:MOV DPTR,#0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

 INC DPTR ; Increment DPTR

 MOVX @DPTR,A ; Out to Port B

 DEC A ; Decrement DAC input

 SJMP AGAIN ; Repeat forever

Result: The output waveform is observed on CRO & amplitude and time period is

measured.

ECE Department MPMC Lab-PC455EC

MJCET Page 93

45. Program to generate continuous triangular waveform

Algorithm:
1. Initialize 8255 in mode 0 & all ports as output ports

2. Initialize A with 00h
3. Send the data to the ports A & B through A register

4. Increment A
5. Repeat the steps 3 & 4 for the generation of up-going saw-tooth

waveform
6. Repeat the steps 2-5 with A = FFh & decrementing A for the

generation of down-going saw-tooth
7. Repeat the steps 2-6 for the generation of continuous waveform

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 CLR A ; Start with value 00H

 UP:MOV DPTR,#0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

 INC DPTR ; Increment DPTR

 MOVX @DPTR,A ; Out to Port B

 INC A ; Increment DAC input

 CJNE A,#0FFH,UP ; Compare & jump if A!=FFH to UP

 DOWN:MOV DPTR,#0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

 INC DPTR ; Increment DPTR

 MOVX @DPTR,A ; Out to Port B

 DEC A ; Decrement DAC input

 CJNE A,#00H,DOWN ; Compare & jump if A!=00H to DOWN

 SJMP UP ; Repeat forever

Result: The output waveform is observed on CRO & amplitude and time period is

measured.

ECE Department MPMC Lab-PC455EC

MJCET Page 94

46. Program to generate Symmetrical Square Wave

Algorithm:
1. Initialize 8255 in mode 0 & all ports as output ports

2. Initialize A with 00h
3. Send the data to the port A through A register & provide the delay

4. Make A = FFh, send it through port A & provide the delay
5. Repeat the steps 2-4 for the generation of continuous waveform

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 BACK:MOV A,#0FFH ; Start with value FFH

 MOV DPTR,#0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

 MOV R0,#0FFH ; Move FFH to R0

 DLY1:DJNZ R0,DLY1 ; for delay

 MOV A,#00H ; Now start with value FFH

 MOVX @DPTR,A ; Out to Port A

 MOV R0,#0FFH ; Move FFH to R0

 DLY2:DJNZ R0,DLY2 ; for same delay

 SJMP BACK ; Repeat forever

Result: The output waveform is observed on CRO & amplitude and time period is

measured.

ECE Department MPMC Lab-PC455EC

MJCET Page 95

47. Program for Stair case (Up-going) with 5 steps

Algorithm:
1. Initialize 8255 in mode 0 & all ports as output ports

2. Initialize A with 00h
3. Add 33h to A & send the data to the port A through A register &

provide the delay
4. Compare A with FFh & Repeat the steps 2 & 3 for the generation of

continuous waveform

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 MOV A,#00H ; Start with value 00H

 RPT:ADD A,#33H ; Add 33H to A reg

 MOV DPTR,#0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

 MOV R0,#0FFH ; Move FFH to R0

 DLY1:DJNZ R0,DLY1 ; for delay

 CJNE A,#0FFH,RPT ; Compare & jump if A!=FFH to RPT

 INC A ; Increment A reg

 MOVX @DPTR,A ; Out to Port A

 MOV R0,#0FFH ; Move FFH to R0

 DLY2:DJNZ R0,DLY2 ; for delay

 SJMP RPT ; Repeat forever

Result: The output waveform is observed on CRO & amplitude and time period is

measured.

ECE Department MPMC Lab-PC455EC

MJCET Page 96

48. Program for Stair case (down-going) with 5 steps

Algorithm:
1. Initialize 8255 in mode 0 & all ports as output ports

2. Initialize A with FFh
3. Subtract 33h from A & send the data to the port A through A

register & provide the delay
4. Compare A with 00h & Repeat the steps 2 & 3 for the generation of

continuous waveform

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 MOV A,#0FFH ; Start with value FFH

 MOV DPTR,#0E800H ; Point to Port A

 RPT:MOVX @DPTR,A ; Out to Port A

 MOV R0,#0FFH ; Move FFH to R0

 DLY1:DJNZ R0,DLY1 ; for delay

 AGAIN:CLR C ; Clear cy

 SUBB A,#33H ; Subtract 33H from A reg

 MOVX @DPTR,A ; Out to Port A

 MOV R0,#0FFH ; Move FFH to R0

 DLY2:DJNZ R0,DLY2 ; for delay

 CJNE A,#00H,AGAIN ; Compare & jump if A!=00H to AGAIN

 DEC A ; Decrement A reg

 SJMP RPT ; Repeat forever

Result: The output waveform is observed on CRO & amplitude and time period is

measured.

ECE Department MPMC Lab-PC455EC

MJCET Page 97

EXPERIMENT NO.11

Interfacing of Traffic Light Controller Using 8051

The traffic light interface simulates the control and operation of traffic lights at a junction

of four roads. The interface provides a set of 6 LED indicators at each of the four

corners. Each of these LED s can be controlled by a port line. Thus the interface allows

the user to simulate a variety of traffic simulations using appropriate software routines.

DESCRIPTION OF THE CIRCUIT:

The organization of 6 LED s is identical at each of the four corners. The organization

with reference to the LED s at “South-West” corner is shown in the figure below:

R = SOUTH RED

A = SOUTH AMBER

L = SOUTH LEFT

S= SOUTH STRAIGHT

Rg=SOUTH RIGHT

DL=SOUTH

PEDESTRIAN

The five LED s (except “Pedestrian”) will be ON or OFF depending on the state of

corresponding port line LED is ON, if the Port line is Logic „HIGH‟ and LED is OFF, if

it is at logic „LOW‟. The last LED marked DL is a set of two dual color LED s and they

both will be either RED or GREEN depending on the state of the corresponding port line

RED if the port line is logic HIGH and GREEN if the port line is logic LOW.

24 LEDS AND CORRESPONDING PORT LINES:

PORT A:

 D7 D6 D5 D4 D3 D2 D1 D0

 ER EA ERg EL SR SA SRg SL

ECE Department MPMC Lab-PC455EC

MJCET Page 98

PORT B:

D7 D6 D5 D4 D3 D2 D1 D0

WR WA WRg WL NR NA NRg NL

PORT C:

 D7 D6 D5 D4 D3 D2 D1 D0

 __

 EP SP WP NP SS ES NS WS

There are four such sets of LED s and these are controlled by 24 port lines of 8255A.

Each port line is inverted and buffered using 7406 (open collector inverter buffers) and is

used to control an LED. Dual color LEDs are controlled by a port line and its

complement.

INSTALLATION:

The interface module has 26-pin connector at one edge of the card. This is used for

connecting the interface over J2 of the ESA 31 trainer. The trainer can be in

KEYBOARD MODE or SERIAL MODE.

ECE Department MPMC Lab-PC455EC

MJCET Page 99

49. PROBLEM STATEMENT:

Generate the sequence for PA, PB, and PC such that the following traffic situations are

simulated.

1. Vehicles from SOUTH can go NORTH and WEST

Vehicles from WEST can go NORTH

Vehicles from NORTH can go SOUTH

Pedestrians can cross on EAST

2. Vehicles from EAST can go WEST and SOUTH

Vehicles from WEST can go EAST

Vehicles from SOUTH can go WEST

Pedestrians can cross on NORTH

3. Vehicles from EAST can go SOUTH

Vehicles from NORTH can go SOUTH and EAST

Vehicles from SOUTH can go NORTH

Pedestrians can cross on WEST

4. Vehicles from EAST can go WEST

Vehicles from WEST can go EAST and NORTH

Vehicles from NORTH can go EAST

Pedestrians can cross on SOUTH

5. No vehicle movement

Pedestrians can cross on all four roads.

The system moves from one state to another state after fixed time delay. The state

transition is indicated by turning ON all the AMBER LEDs and all Pedestrians RED

LEDs for a fixed duration. The sequence of the above states is repeated again and again.

Algorithm:
1. Initialize 8255 in mode 0 & all ports as output ports
2. Load the look-up table with port values according to the traffic

situations
3. Send the port values through the respective port addresses

4. Provide the delay in between the two states

5. Repeat the process to control the traffic continuously

; Program memory from 8000H to 804FH

 ORG 8000H

 PORT A EQU E800H

 PORT B EQU E801H

 PORT C EQEU E802H

 CWR EQU E803H

ECE Department MPMC Lab-PC455EC

MJCET Page 100

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 AGAIN:MOV DPTR,#PORTS ; Initialize the PORTS address

 NEXTST:MOVX A,@DPTR

 PUSH DPL

 PUSH DPH

 MOV DPTR,#0E800H ;Port A value

 MOVX @DPTR,A

 POP DPH

 POP DPL

 INC DPTR

 MOVX A,@DPTR

 PUSH DPL

 PUSH DPH

 MOV DPTR,0E801H ;Port B value

 MOVX @DPTR,A

 POP DPH

 POP DPL

 INC DPTR

 MOVX A,@DPTR

 PUSH DPL

 PUSH DPH

 MOV DPTR,#0E802H ; Port C value

 MOVX @DPTR,A

 POP DPH

 POP DPL

 INC DPTR

 LCALL DELAY ; Provide delay

 MOV A,DPL

 CJNE A,#1EH,NEXTST

 SJMP AGAIN

ECE Department MPMC Lab-PC455EC

MJCET Page 101

 DELAY:MOV R2,#06 ; Delay routine

 LOOP3:MOV R4,#0FFH

 LOOP2:MOV R3, #0FFH

 LOOP1:DEC R3

 CJNE R3,#00H,LOOP1

 DEC R4

 CJNE R4,#00H,LOOP2

 DEC R2

 CJNE R2,#00H,LOOP3

 RET

; Enter the data mentioned below from 0000H to 001EH in data memory.

 PORTS: DB 10H, 81H, 7AH ;State 1

 DB 44H, 44H, 0F0H ;All Ambers ON

 DB 08H, 11H, 0E5H ;State 2

 DB 44H, 44H, 0F0H ;All Ambers ON

 DB 81H, 10H, 0DAH ;State 3

 DB 44H, 44H, 0F0H

 DB 11H, 08H, 0B5H ;State 4

 DB 44H, 44H, 0F0H

 DB 88H, 88H, 00H ;State 5

 DB 44H, 44H, 0F0

 DB 00H ;Dummy

Result: The output is observed on traffic light interface module.

ECE Department MPMC Lab-PC455EC

MJCET Page 102

50. The following sequence of simple traffic conditions are simulated as:

 Condition 1

 Vehicles from SOUTH can go NORTH and WEST

 Vehicles from WEST can go NORTH

 Vehicles from NORTH can go SOUTH

 Pedestrian can cross on EAST

Condition 2

 No vehicle movement

 Pedestrians can cross on all four roads

Algorithm:
1. Initialize 8255 in mode 0 & all ports as output ports

2. Load the look-up table with port values according to the traffic
situations

3. Send the port values through the respective port addresses
4. Provide the delay in between the two states

5. Repeat the process to control the traffic continuously

 PORTS: Db A0h, 81h, 7Ah

 Db 44h, 44h, 0F0h

 Db 88h, 88h, 00h

 Db 44h, 44h, 0F0h

 Db 00h

ECE Department MPMC Lab-PC455EC

MJCET Page 103

EXPERIMENT NO.12

Programs to control stepper motor using 8051

Data acquisition and control represents the most popular applications of microprocessors

& microcontrollers. Stepper motor control is a very popular application of

microprocessors & microcontrollers in control area as stepper motors are capable of

accepting pulses directly from the processors & controllers and move accordingly.

There are two types of Stepper motors:

1. Permanent Magnet (PM)

2. Variable Reluctance (VR)

OPERATION OF STEPPER MOTOR:

Stepper motor consists of two important parts, the stator and the rotor. The stator

normally has 4 windings on four wheels whereas the rotor is magnetic in nature and has

got teeth on it, which is magnetized as North and South poles.

WORKING:

Stepper motor works on the principle of repulsion between magnets. One input to the

stepper motor is given in the form of pulses, provided to the windings on the poles as

1000, 0100, 0010, 0001. The windings are provided with input by the 8051

microcontroller through the Port A pins of 8255.

Stator is responsible for creating the magnetic field and rotating the rotor.

SPECIFICATIONS OF THE STEPPER MOTOR USED:

The motor is reversible on the application of a torque of 3Kgcm. The power

requirement is +5V DC at 1.2A current per winding at full torque. The step angle is

1.8°, i.e., for every single excitation, the motor shaft rotates by 1.8°.For the motor to

rotate one full revolution (360°), number of steps required is

 360
o
 / 1.8

o
 = 200

The stepper motor used has four stator windings which are brought out through colored

wires terminated at a 4 pin polarized female connector. The remaining two wires (White

& Black wires) are shorted and terminated at 2 pin polarized female connector.

LOOPING:

The number of times the stepper motor should loop is given by:

Count = No. of teeth on rotor X total No. of rotations.

ECE Department MPMC Lab-PC455EC

MJCET Page 104

The Port A pins of 8255 (PA0, PA1, PA2, PA3) are used. The values that have to be

sent to Port A to drive the stepper motor in clock wise direction are 88h, 44h, 22h, 22h

and anti clock wise direction are 11h, 22h, 44h, 88h.

CIRCUIT DESCRIPTION:

The stepper motor interface uses four transistor pairs (SL100 & 2N3055) in a Darlington

pair configuration. Each Darlington pair is used to excite the particular winding of the

motor connected to 4 pin connector on the interface. The inputs to these transistors are

from the 8255 PPI I/O lines of the microcontroller trainer kit. „Port A‟ lower nibble PA0,

PA1, PA2, PA3 is the four lines brought out to the 26 pin FRC male connector J1 on the

interface module. The freewheeling diodes across each winding protect transistors from

switching transients.

INSTALLATION:

The interface has two no. of 3 pins and one four pin connectors. Plug in four pin

polarized connector of the motor to interface and the 3 pin connector of the motor to the 3

pin connector of the interface marked as “WHT BLK”. Connect the 3 pin female

connector of the stepper motor power supply to the connector on the interface marked as

“GND +5V/12V”. Connect the 26 core flat ribbon cable to J1 connector on the interface

module and the other end of the cable to microcontroller 8051 trainer kit J2.

Switch on power to the trainer kit as well as the stepper motor. Key in the program

required for the application and executes the same. When the program is executed, the

motor shaft rotates in steps at the speed depending upon the delay between successive

steps, which is generated and can be controlled by the program. The direction of rotation

can also be controlled through software.

CALCULATIONS:

No. of teeth on rotor = N1 = 50

No. of poles on stator = 8

No. of teeth on stator = 8X5 = N2 = 40

Step angle = 360
o
 (N1 – N2) = 1.8

O

 N1 * N2

The step angle is 1.8
O
 i.e. for every single excitation; the motor shaft rotates by 1.8

O
.

ECE Department MPMC Lab-PC455EC

MJCET Page 105

51. Write an 8051 program to drive the Stepper motor continuously in clockwise

direction.

Algorithm:
1. Initialize 8255 in mode 0 & all ports as output ports

2. Load the input pattern in Acc register & send it through port A
address

3. Rotate right the value of Acc register
4. Provide the delay

5. Repeat the process for continuous rotation

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR, #0E803H

 MOV A, #80H ; Initialize 8255A for mode 0

 MOVX @DPTR, A ; with PA & PB as OUT

 MOV A, #88H ; Move the input pattern to A

 BACK:MOV DPTR, #0E800H ; Point to Port A

 MOVX @DPTR, A ; Out to Port A

 RR A ; Rotate right A reg

 MOV R4, #10H ; Delay routine

 LOOP:MOV R3, #0FFH

 DLY1:DJNZ R3, DLY1

 DJNZ R4, LOOP

 SJMP BACK ; Repeat continuously

Result: The motor shaft rotates continuously in clockwise direction.

ECE Department MPMC Lab-PC455EC

MJCET Page 106

52. Write an 8051 program to drive the Stepper motor continuously in anti-clockwise

direction.

Algorithm:
1. Initialize 8255 in mode 0 & all ports as output ports

2. Load the input pattern in Acc register & send it through port A
address

3. Rotate left the value of Acc register
4. Provide the delay

5. Repeat the process for continuous rotation

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR, #0E803H

 MOV A, #80H ; Initialize 8255A for mode 0

 MOVX @DPTR, A ; with PA & PB as OUT

 MOV A, #88H ; Move the input pattern to A

 BACK:MOV DPTR, #0E800H ; Point to Port A

 MOVX @DPTR, A ; Out to Port A

 RL A ; Rotate left A reg

 MOV R4, #10H ; Delay routine

 LOOP:MOV R3, #0FFH

 DLY1:DJNZ R3, DLY1

 DJNZ R4, LOOP

 SJMP BACK ; Repeat continuously

Result: The motor shaft rotates continuously in anti-clockwise direction.

ECE Department MPMC Lab-PC455EC

MJCET Page 107

53. Write an 8051 program to drive the Stepper motor 5 times clockwise & 3 times anti-

clockwise direction.

Algorithm:
1. Initialize 8255 in mode 0 & all ports as output ports

2. Initialize the counter for clockwise rotation & register for step size
3. Load the input pattern in Acc register & send it through port A

address
3. Rotate right the value of Acc register

4. Provide the delay
5. Repeat the process for clockwise rotation till the count becomes

zero
6. Repeat the process for anti-clockwise rotation

7. Repeat the steps 2-6 for continuous rotation

Source Code:

 ORG 8000H ; Starting address

 MOV DPTR,#0E803H

 MOV A,#80H ; Initialize 8255A for mode 0

 MOVX @DPTR,A ; with PA & PB as OUT

 MOV R1,#05H ; Initialize the counter

 MOV R0,#0C8H ; Initialize the step size

 MOV A,#88H ; Move the input pattern to A

 BACK1:MOV DPTR,#0E800H ; Point to Port A

 MOVX @DPTR,A ; Out to Port A

 RR A ; Rotate right A reg

 MOV R4,#10H ; Delay routine

 LOOP1:MOV R3,#0FFH

 DLY1:DJNZ R3,DLY1

 DJNZ R4,LOOP1

 DJNZ R0,BACK1

 DJNZ R1,BACK1

 MOV R1,#03H ; Initialize the counter

 MOV R0,#0C8H ; Initialize the step size

 MOV A,#11H ; Move the input pattern to A

 BACK2:MOVX @DPTR,A ; Out to Port A

ECE Department MPMC Lab-PC455EC

MJCET Page 108

 RL A ; Rotate left A reg

 MOV R4,#10H ; Delay routine

 LOOP2:MOV R3,#0FFH

 DLY2:DJNZ R3,DLY2

 DJNZ R4,LOOP2

 DJNZ R0,BACK2

 DJNZ R1,BACK2

 SJMP BACK1 ; Repeat continuously

Result: The motor shaft rotates in clockwise direction 5 times & anti-clockwise direction

3 times.

ECE Department MPMC Lab-PC455EC

MJCET Page 109

APPENDIX

LABORATORY COURSE ASSESSMENT GUIDELINES

i. The number of experiments/programs/sessions in each laboratory course shall be

as per the curriculum in the scheme of instructions provided by OU.

ii. The students will maintain a separate note book for each laboratory course in

which all the related work would be done.

iii. In each session the students will complete the assigned tasks of process

development, coding, compiling, debugging, linking and executing the programs.

iv. The students will then execute the programme and validate it by obtaining the

correct output for the provided input. The course coordinator will certify the

validation in the same session.

v. The students will submit the record in the next class. The evaluation will be

continuous and not cycle-wise or at semester end.

vi. The internal marks of 25 are awarded in the following manner:

a. Laboratory record - Maximum Marks 15

b. Test and Viva Voce - Maximum Marks 10

vii. Laboratory Record: Each experimental record is evaluated for a score of 50. The

rubric parameters are as follows:

a. Write up format - Maximum Score 20

b. Process development and coding - Maximum Score 10

c. Compile, debug, link and execute program - Maximum Score 15

d. Process validation through input-output - Maximum Score 5

While (a) is assessed at the time of record submission, (b), (c) and (d) are assessed

during the session based on the performance of the student in the laboratory

session. Hence if a student is absent for any laboratory session but completes the

program in another session and subsequently submits the record, it shall be

evaluated for a score of 20 and not 50.

viii. The experiment evaluation rubric is therefore as follows :

ix.

Parameter Max Score Outstanding Accomplished Developing Beginner Points

Process

Development

and Coding

10

Compilation,

Debugging,

Linking and

Executing

15

Process

Validation 5

Write up format 20

ECE Department MPMC Lab-PC455EC

MJCET Page 110

x. The first page of the record will contain the following title sheet:

MUFFAKHAM JAH COLLEGE OF ENGINEERING AND TECHNOLOGHY

LABORATORY EXPERIMENT ASSESSMENT SHEET

ELECTRONICS & COMMUNICATION ENGINEERING DEPARTMENT

B.E. 3/4 2018-2019

MICROPROCESSOR & MICROCONTROLLER LABORATORY

NAME: ROLL NO.

Exp.

No.
Title of the Program

Date

conducted

Date

Submitted

Process

Development

and Coding

(Max 10)

Compilation

, Debugging,

Linking and

Executing

(Max 15)

Process

Validation

(Max 5)

Write up

format

(Max 20)

Total

Score

(Max 50)

1

2

3

4

5

6

7

8

9

10

11

12

 TOTAL

Date: Signature of Course Coordinator

ECE Department MPMC Lab-PC455EC

MJCET Page 111

xi. The 15 marks of laboratory record will be scaled down from the TOTAL of the

assessment sheet.

xii. The test and viva voce will be scored for 10 marks as follows:

Internal Test - 6 marks

Viva Voce / Quiz - 4 marks

xiii. Each laboratory course shall have 5 course outcomes.

The proposed course outcomes would be as follows:

On successful completion of the course, the student will acquire the ability to:

1. Apply the design concepts for development of a process and interpret data

2. Demonstrate knowledge of programming environment, compiling, debugging,

linking and executing variety of programs.

3. Demonstrate documentation and presentation of the algorithms / flowcharts /

programs in a record form.

4. Validate the process using known input-output parameters.

5. Employ analytical and logical skills to solve real world problem and demonstrate

oral communication skills.

xiv. The Course coordinators would prepare the assessment matrix in accordance with

the guidelines provided above for the five course outcomes. The scores to be

entered against each of the course outcome would be the sum of the following as

obtained from the assessment sheet in the record:

a. Course Outcome 1: Sum of the scores under „Process Development and

Coding‟.

b. Course Outcome 2: Sum of the scores under „Compilation/Debugging/Linking

and Executing‟.

c. Course Outcome 3: Sum of the scores under „Write up format‟.

d. Course Outcome 4: Sum of the scores under „Process validation‟.

e. Course Outcome 5: Marks for „Internal Test and Viva voce‟.

xv. Soft copy of the assessment matrix would be provided to the course coordinators.

xvi. There may be some laboratory courses based on proprietary software like

MATLAB, AUTOCAD etc. for which the course coordinators and programme

coordinators would formulate appropriate course outcomes.

ECE Department MPMC Lab-PC455EC

MJCET Page 112

MUFFAKHAM JAH COLLEGE OF ENGINEERING AND TECHNOLOGY

Program Outcomes of B.E (ECE) Program:
PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, research literature, and analyse complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural

sciences, and engineering sciences

PO3: Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

 PO10: Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one‟s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO 12: Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs) of ECE Department, MJCET

PSO1: The ECE Graduates will acquire state of art analysis and design skills in the areas of

digital and analog VLSI Design using modern CAD tools.

PSO2: The ECE Graduates will develop preliminary skills and capabilities necessary for

embedded system design and demonstrate understanding of its societal impact.

PSO3: The ECE Graduates will obtain the knowledge of the working principles of modern

communication systems and be able to develop simulation models of components of a

communication system.

PSO4: The ECE Graduates will develop soft skills, aptitude and programming skills to be

employable in IT sector.

