

MICRO PROCESSORS & MICROCONTROLLERS

LAB (PC268EE)

LABORATORY MANUAL

VI SEM B.E.(EEE/EIE) AICTE-MC

DEPARTMENT OF ELECTRICAL ENGINEERING

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

Banjara Hills Road No 3, Hyderabad 34

www.mjcollege.ac.in

2020-21

Prepared By: G. RAVI KIRAN, Asst. Professor

 MicroProcessors & MicroControllers Lab

1

MICROPROCESSORS & MICROCONTROLLERS LAB

(EEE & EIE)

LIST OF EXPERIMENTS

Using GNU 8085 Simulator

Demo: (A) Addition of two 8 Bit Numbers.

 (B) Subtraction of two 8 Bit Numbers.

1. (a) Programs for Signed/Unsigned Multiplication.

(b) Program for Signed/Unsigned Division.

2. (a) Program to find Average of 8 Bit Numbers in an Array.

(b) Program for finding the largest/smallest number in an Array.

(c) Program for finding the square root a given number.

3. Program for sorting the set of numbers.

(a) Program for arranging the numbers in ascending order.

 (b) Program for arranging the numbers in descending order.

4. Programs for code conversion like BCD numbers to seven segment.

 USING 8085 KIT

5. 8255 – PPI: ALP to generate Triangular wave using DAC

(a) Program to generate Saw tooth wave form.

(b) Program to generate Triangular wave form.

(c) Program to generate Square wave form.

 USING 8051 KIT

6. Arithmetic Instructions: Multibyte Operations

 (a) Program for addition/subtraction of two 16 bit numbers.

 (b) Program for multiplication/division of two 16 bit/32 bit numbers.

7. Data Transfer – block move, exchange, sorting, finding largest number in an

array.

(a) Program for exchange of data.

 (b) Program for sorting the set of numbers.

 (c) Program for finding maximum/minimum number in an array.

8. Boolean & Logical Instructions (Bit Manipulations)

 (a) Program for reverse & logical „OR‟ of a given number.

 9. Program for use of “JUMP” & “CAL” instructions.

 MicroProcessors & MicroControllers Lab

2

USING (KEIL Software) for 8051

Demo: (a) Program to find addition of two numbers.

 (b) Program of Multibyte Addition

 10. Program for activating ports and generation of square wave.

 11. (a) Program for ascending order/descending order of a given numbers

 (b) Program for data transfer.

 MicroProcessors & MicroControllers Lab

3

Faculty of Engineering, O.U. AICTE Model Curriculum with effect from Academic Year 2020-21

Course Code Course Title Core/Elective

PC268EE Microprocessor and Microcontrollers Lab Core

 Prerequisite
 Contact Hours per Week

 CIE

S EE

 Credits
L T D P

- - - - 2 25 50 1

 Course Objectives

 Developing of assembly level programs and providing the basics of the processors

 To provide solid foundation on interfacing the external devices to the processor according to the user

requirements to create novel products and solutions for the real time problems.

 To assist the students with an academic environment needed for a successful professional career.

 Course Outcomes

 At the end of the course students will be able to

 Familiarize with the assembly language programming.

 Write programs for given task using different addressing modes.

 Interface various IO devices using 8255 PPI

 Write programs using various interrupts.

 Interface the microcontroller for some real life applications.

List of Experiments:

8085 based:

1. Signed/unsigned multiplication and division.

2. Finding average, largest, square root, etc.

3. Sorting set of numbers.

4. Code conversion like BCD numbers into binary.

5. 8255 PPI for interfacing LEDs.

6. 8255 PPI for interfacing to generate triangular wave using DAC.

7. Using interrupts.

8. Interfacing seven segment display.

9. Interfacing matrix keyboard.

8051 based:

1. Data transfer block move, exchange, sorting, finding largest element in array.

2. Arithmetic instructions: multi byte operations.

3. Boolean & logical instructions (Bit manipulations).

4. Programs to generate delay, programs using serial port and on chip timer/counter.

5. Use of JUMP and CALL instructions.

6. Square wave generation using timers.

7. Interfacing of keyboard and 7-segment display module.

8. DAC interfacing for generation of sinusoidal wave.

Note: At least five experiments for 8085 and at least five experiments for 8051.

 MicroProcessors & MicroControllers Lab

1

INTRODUCTION TO MASM

 GNUSim8085 is a graphical simulator, assembler and debugger for the Intel

8085 microprocessor in Linux and Windows. It is among the 20 winners of the FOSS

India Awards announced on February, 2008. GNUSim8085 was originally written by

Sridhar Ratna kumar in fall 2003 when he realized that no proper simulators existed for

Linux. Several patches, bug fixes and software packaging have been contributed by the

GNUSim8085 community. GNUSim8085 users are encouraged to contribute to the

simulator through coding, documenting, testing, translating and porting the simulator.

GNUSim8085 development is becoming active as of 09/2016.
[5]

Editor

1. Program editor with interactive input wizard for all the standard instructions

2. Syntax highlighting in editor to distinguish between instructions, operands,

comments etc.

3. A separate opcode view which displays assembled code in hex

Assembler

1. Support for all standard instructions of the 8085

2. Minimalistic support for three assembler directives (.equ, .db, .ds) to control data

locations, there exist no directives to directly control code locations

3. Code start is defined outside source code ("load me at" entry) - if not defined

(default), code is generated (strangely) from 4200h (instead from the real reset

vector 0000h)

4. Assembly results can be stored as listing file only (no binary file output)

Debugger

1. Complete view of registers and flags

2. Support for breakpoints

3. Step by step execution/debugging of program

4. Hex / Decimal Converter

5. Runtime inspection of stack and source code variables defined

6. Runtime inspection and manipulation of memory and I/O ports

Printing

1. Printing of program from editor as well as assembled hex code (known not to

work well in Windows)

Key Features of GNU 8085 Simulator

 A simple editor component with syntax highlighting.

 A keypad to input assembly language instructions with appropriate arguments.

 Easy view of register contents.

 Easy view of flag contents.

 Hexadecimal <–> Decimal converter.

 View of stack, memory and I/O contents.

 Support for breakpoints for program debugging.

 Stepwise program execution.

 One click conversion of assembly program to opcode listing.

 Printing support.

 UI translated in various languages.

https://en.wikipedia.org/wiki/Computer_simulation
https://en.wikipedia.org/wiki/Assembly_language#Assembler
https://en.wikipedia.org/wiki/Debugger
https://en.wikipedia.org/wiki/Intel_8085
https://en.wikipedia.org/wiki/Intel_8085
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/w/index.php?title=FOSS_India_Awards&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=FOSS_India_Awards&action=edit&redlink=1
https://en.wikipedia.org/wiki/GNUSim8085#cite_note-5

 MicroProcessors & MicroControllers Lab

2

8085 MICROPROCESSOR

Introduction
The 8085 microprocessor was made by Intel in mid 1970s. It was binary compatible

with 8080 microprocessor but required less supporting hardware thus leading to less

expensive microprocessor systems. It is a general purpose microprocessor capable of

addressing 64k of memory. The device has 40 pins, require a +5V power supply and can

operate with 3 MHz single phase clock. It has also a separate address space for up to 256

I/O ports. The instruction set is backward compatible with its predecessor 8080 even

though they are not pin-compatible.

 The 8085 has a 16 bit address bus which enables it to address 64 KB of

memory, a data bus 8 bit wide and control buses that carry essential signals for various

operations. It also has a built in register array which are usually labeled A(Accumulator),

B, C, D, E, H, and L. Further special-purpose registers are the 16-bit Program Counter

(PC), Stack Pointer (SP), and 8-bit flag register F. The microprocessor has three

maskable interrupts (RST 7.5, RST 6.5 and RST 5.5), one Non-Maskable interrupt

(TRAP), and one externally serviced interrupt (INTR). The RST n.5 interrupts refer to

actual pins on the processor a feature which permitted simple systems to avoid the cost

of a separate interrupt controller chip.

Control Unit
It generates signals within microprocessor to carry out the instruction, which has been

decoded. In reality causes certain connections between blocks of the processor be

opened or closed, so that data goes where it is required, and so that ALU operations

occur.

Arithmetic Logic Unit
The ALU performs the actual numerical and logic operation such as “add”, “subtract”,

“AND”, “OR”, etc. Uses data from memory and from Accumulator to perform

arithmetic and always stores the result of operation in the Accumulator.

 MicroProcessors & MicroControllers Lab

3

Registers
The 8085 microprocessor includes six registers, one accumulator, and one flag register,

as shown in Fig 1. In addition, it has two 16-bit registers: the stack pointer and the

program counter. The 8085 has six general-purpose registers to store 8-bit data; these are

identified as B, C, D, E, H, and L as shown in Fig 1. They can be combined as register

pairs - BC, DE, and HL - to perform some 16-bit operations. The programmer can use

these registers to store or copy data into the registers by using data copy instructions.

Accumulator
The accumulator is an 8-bit register that is a part of arithmetic/logic unit (ALU). This

register is used to store 8-bit data and to perform arithmetic and logical operations. The

result of an operation is stored in the accumulator. The accumulator is also identified as

register A.

Flag Registers
The ALU includes five flip-flops, which are set or reset after an operation according to

data conditions of the result in the accumulator and other registers. They are called

Zero(Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags. The most

commonly used flags are Zero, Carry, and Sign. The microprocessor uses these flags to

test data conditions.

Program Counter (PC)
This 16-bit register deals with sequencing the execution of instructions. This register is a

memory pointer. Memory locations have 16-bit addresses, and that is why this is a 16-bit

register. The microprocessor uses this register to sequence the execution of the

instructions. The function of the program counter is to point to the memory address from

which the next byte is to be fetched. When a byte (machine code) is being fetched, the

program counter is incremented by one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register used as a memory pointer. It points to a

memory location in R/W memory, called the stack. The beginning of the stack is defined

by loading 16-bit address in the stack pointer.

Instruction Register / Decoder
This is a temporary storage for the current instruction of a program. Latest instruction is

sent to here from memory prior to execution. Decoder then takes instruction and

“decodes” or interprets the instruction. Decoded instruction is then passed to next stage.

Memory Address Register (MAR)
It holds addresses received from PC for eg: of next program instruction. MAR feeds the

address bus with address of the location of the program under execution.

Control Generator
It generates signals within microprocessor to carry out the instruction which has been

decoded. In reality it causes certain connections between blocks of the processor to be

opened or closed, so that data goes where it is required, and so that ALU operations

occur.

 MicroProcessors & MicroControllers Lab

4

Register Selector

This block controls the use of the register stack. Just a logic circuit which switches

between different registers in the set will receive instructions from Control Unit.

8085 System Bus
The microprocessor performs four operations primarily.

• Memory Read

• Memory Write

• I/O Read

• I/O Write

All these operations are part of the communication processes between microprocessor

and peripheral devices. The 8085 performs these operations using three sets of

communication lines called buses - the address bus, the data bus and the control bus.

Address Bus
The address bus is a group of 16 lines. The address bus is unidirectional: bits flow only

in one direction – from the 8085 to the peripheral devices. The microprocessor uses the

address bus to perform the first function: identifying a peripheral or memory location.

Each peripheral or memory location is identified by a 16 bit address. The 8085 with its

16 lines is capable of addressing 64 K memory locations.

Data Bus
The data bus is a group of eight lines used for dataflow. They are bidirectional: data

flows in both direction between the 8085 and memory and peripheral devices. The 8

lines enable the microprocessor to manipulate 8-bit data ranging from 00 to FF.

Control Bus
The control bus consists of various single lines that carry synchronization signals. These

are not groups of lines like address of data bus but individual lines that provide a pulse

to indicate an operation. The 8085 generates specific control signal for each operation it

performs. These signals are used to identify a device type which the processor intends to

communicate.

8085 Pin Diagram

 MicroProcessors & MicroControllers Lab

5

8085 Pin Description

Properties

 ƒ Single + 5V Supply

 ƒ 4 Vectored Interrupts (One is Non Maskable)

 ƒ Serial In/Serial Out Port

 ƒ Decimal, Binary, and Double Precision Arithmetic

 ƒ Direct Addressing Capability to 64K bytes of memory

A8-A15 (Output 3 states)
Address Bus carries the most significant 8 bits of the memory address or the 8 bits of the

I/0 address; 3 stated during Hold and Halt modes.

AD0 - AD 7 (Input/Output 3state)
Multiplexed Address/Data Bus carries Lower 8 bits of the memory address (or I/O

address) appear on the bus during the first clock cycle of a machine state. It then

becomes the data bus during the second and third clock cycles. 3 stated during Hold and

Halt modes.

ALE (Output)
Address Latch Enable occurs during the first clock cycle of a machine state and enables

the address to get latched into the on chip latch of peripherals. The falling edge of ALE

is set to guarantee setup and hold times for the address information. ALE can also be

used to strobe the status information. ALE is never 3 stated.

SO, S1 (Output)
Data Bus Status: Encoded status of the bus cycle

 S1 S0

 0 0 HALT

 0 1 WRITE

 1 0 READ

 1 1 FETCH

RD (Output 3state)
READ indicates the selected memory or 1/0 device is to be read and that the Data Bus is

available for the data transfer.

WR (Output 3state)
WRITE indicates the data on the Data Bus is to be written into the selected memory or

1/0 location. Data is set up at the trailing edge of WR. 3 stated during Hold and Halt

modes.

READY (Input)
If Ready is high during a read or write cycle, it indicates that the memory or peripheral

is ready to send or receive data. If Ready is low, the CPU will wait for Ready to go high

before completing the read or write cycle.

 MicroProcessors & MicroControllers Lab

6

HOLD (Input)
HOLD indicates that another Master is requesting the use of the address and data buses.

The CPU, upon receiving the Hold request, will relinquish the use of buses as soon as

the completion of the current machine cycle. Internal processing can continue. The

processor can regain the buses only after the Hold is removed. When the Hold is

acknowledged, the Address, Data, RD, WR, and IO/M lines are 3stated.

HLDA (Output)
HOLD ACKNOWLEDGE indicates that the CPU has received the Hold request and that

it will relinquish the buses in the next clock cycle. HLDA goes low after the Hold

request is removed. The CPU takes the buses one half clock cycle after HLDA goes low.

INTR (Input)
INTERRUPT REQUEST is used as a general purpose interrupt. It is sampled only using

the next to the last clock cycle of the instruction. If it is active, the Program Counter

(PC) will be inhibited from incrementing and an INTA will be issued. During this cycle

a RESTART or CALL instruction can be inserted to jump to the interrupt service

routine. The INTR is enabled and disabled by software. It is disabled by Reset and

immediately after an interrupt is accepted.

INTA (Output)
INTERRUPT ACKNOWLEDGE is used instead of (and has the same timing as) RD

during the Instruction cycle after an INTR is accepted. It can be used to activate the

8259 Interrupt chip or some other interrupt port.

RST 5.5/ RST 6.5/ RST 7.5
RESTART INTERRUPTS have the same timing as I NTR except they cause an internal

RESTART to be automatically inserted.

 RST 7.5 Highest Priority

 RST 6.5

 RST 5.5 Lowest Priority

The priority of these interrupts is ordered as shown above. These interrupts have a

higher priority than the INTR.

TRAP (Input)
Trap interrupt is a non-maskable restart interrupt. It is recognized at the same time as

INTR. It is unaffected by any mask or Interrupt Enable. It has the highest priority of any

interrupt.

RESET IN (Input)
Reset sets the Program Counter to zero and resets the Interrupt Enable and HLDA flip

flops. None of the other flags or registers (except the instruction register) are affected

The CPU is held in the reset condition as long as Reset is applied.

RESET OUT (Output)
It indicates that CPU is been reset. It used as a system RESET. The signal is

synchronized to the processor clock.

 MicroProcessors & MicroControllers Lab

7

X1, X2 (Input)
Crystal or R/C network connections to set the internal clock generator X1 can also be an

external clock input instead of a crystal. The input frequency is divided by 2 to give the

internal operating frequency.

CLK (Output)
Clock Output is used as a system clock when a crystal or R/ C network is used as an

input to the CPU. The period of CLK is twice the X1, X2 input period.

IO/M (Output)
IO/M indicates whether the Read/Write is to memory or l/O. It is tri stated during Hold

and Halt modes.

SID (Input)
Serial input data line: The data on this line is loaded into accumulator bit 7 whenever a

RIM instruction is executed.

SOD (output)
Serial output data line: The output SOD is set or reset as specified by the SIM

instruction.

Vcc +5V supply.

Vss Ground Reference

8085 Addressing modes
They are mainly classified into four:

 Immediate addressing.

 Register addressing.

 Direct addressing.

 Indirect addressing.

Immediate addressing
Data is present in the instruction. Load the immediate data to the destination provided.

 Example: MVI R, data

Register addressing
Data is provided through the registers.

 Example: MOV Rd, Rs

Direct addressing
It is used to accept data from outside devices to store in the accumulator or send the data

stored in the accumulator to the outside device. Accept the data from the port 00H and

store them into the accumulator or Send the data from the accumulator to the port 01H.

 Example: IN 00H or OUT 01H

Indirect Addressing
In this mode the Effective Address is calculated by the processor and the contents of the

address (and the one following) are used to form a second address. The second address

is where the data is stored. Note that this requires several memory accesses; two

accesses to retrieve the 16-bit address and a further access (or accesses) to retrieve the

data which is to be loaded into the register.

 MicroProcessors & MicroControllers Lab

8

Instruction Format of 8085:
Each Instruction Format of 8085 and Data Format of 8085 microprocessor has specific

information fields. These information fields of instructions are called elements of

instruction.

These are:

 Operation code: The operation code field in the instruction specifies the

operation to be performed. The operation is specified by binary code, hence the

name operation code or simply opcode. For example, for 8085 processor

operation code for ADD B instruction is 80H.

 Source / destination operand: The source/destination operand field directly

specifies the source/destination operand for the instruction. In the Instruction

Format of 8085, the instruction MOV A,B has B register contents as a source

operand and A register contents as a destination operand because this instruction

copies the contents of register B to register A.

 Source operand address: We know that the operation specified by the

instruction may require one or more operands. The source operand may be in the

8085 register or in the memory. Many times the Instruction Format of 8085

specifies the address of the source operand so that operand(s) can be accessed

and operated by the 8085 according to the instruction.

In 8085, the source operand address for instruction ADD M is given by HL register pair.

 Destination operand address: The operation executed by the 8085 may produce

result. Most of the times the result is stored in one of the operand. Such operand

is known as destination operand. The Instruction and Data Format of 8085 which

produce result specifies the destination operand address. In 8085, the destination

operand address for instruction INR M is given by HL register pair because INR

M instruction increments the contents of memory location specified by HL

register pair and stores the result in the same memory location.

 Next instruction address : The next instruction address tells the 8085 from

where to fetch the next instruction after completion of execution of current

instruction. For BRANCH instructions the address of the next instruction is

specified within the instruction. However, for other instructions, the next

instruction to be fetched immediately follows the current instruction. For

example, in 8085, instruction after INR B follows it. The instruction JMP 2000H

specifies the next instruction address as 2000H.

Instruction Formats:

The Instruction Format of 8085 set consists of one, two and three byte instructions. The

first byte is always the opcode; in two-byte instructions the second byte is usually data;

in three byte instructions the last two bytes present address or 16-bit data.

1. One byte instruction:

For Example: MOV A, B whose opcode is 78H which is one byte. This Instruction and

Data Format of 8085 copies the contents of B register in A register.

 MicroProcessors & MicroControllers Lab

9

2. Two byte instruction :

For Example: MVI B, 02H. The opcode for this instruction is 06H and is always

followed by a byte data (02H in this case). This instruction is a two byte instruction

which copies immediate data into B register.

3. Three byte instruction :

For Example: JMP 6200H. The opcode for this instruction is C3H and is always

followed by 16 bit address (6200H in this case). This instruction is a three byte

instruction which loads 16 bit address into program counter.

Opcode Format of 8085:

The 8085A microprocessor has 8-bit opcodes. The opcode is unique for each Instruction

and Data Format of 8085 and contains the information about operation, register to be

used, memory to be used etc. The 8085A identifies all operations, registers and flags

with a specific code. For example, all internal registers are identified as shown in the

Tables 2.1(a) and 2.2(b).

Similarly, there are different codes for each opera are identified as follows :

 MicroProcessors & MicroControllers Lab

10

Note: DDD defines the destination register, SSS defines the source register and DD

defines the register pair.

Data Format of 8085 Microprocessor:

The operand is another name for data. It may appear in different forms :

 Addresses

 Numbers/Logical data and

 Characters

Addresses: The address is a 16-bit unsigned integer ,number used to refer a memory

location.

Numbers/Data: The 8085 supports following numeric data types.

 Signed Integer: A signed integer number is either a positive number or a

negative number. In 8085, 8-bits are assigned for signed integer, in which most

significant bit is used for sign and remaining seven bits are used for Sign bit 0

indicates positive number whereas sign bit 1 indicates negative number.

 Unsigned Integer: The 8085 microprocessor supports 8-bit unsigned integer.

 BCD: The term BCD number stands for binary coded decimal number. It uses

ten digits from 0 through 9. The 8-bit register of 8085 can store two digit BCD

Characters: The 8085 uses ASCII code to represent characters. It is a 7-bit

alphanumeric code that represents decimal numbers, English alphabets, and other special

characters.

http://www.allaboutcircuits.com/

 MicroProcessors & MicroControllers Lab

11

Introduction to Microcontroller 8051

The most universally employed set of microcontrollers come from the 8051 family. 8051

Microcontrollers persist to be an ideal choice for a huge group of hobbyists and experts.

In the course of 8051, the humankind became eyewitness to the most ground- breaking

set of microcontrollers. The original 8051 microcontroller was initially invented by Intel.

The two other members of this 8051 family are-

 8052-This microcontroller has 3 timers & 256 bytes of RAM. Additionally it

has all the features of the traditional 8051 microcontroller. 8051 microcontroller is a

subset of 8052 microcontroller.

 8031 - This microcontroller is ROM less, other than that it has all the features

of a traditional 8051 microcontroller. For execution an external ROM of size 64K bytes

can be added to its chip.

8051 microcontroller brings into play 2 different sorts of memory such as - NV-

RAM, UV - EPROM and Flash.

8051 is the basic microcontroller to learn embedded systems projects.

FEATURES OF 8051
8051 microcontroller is an eight bit microcontroller launched. It is available in 40 pin

DIP (dual inline package). It has 4kB of ROM (on- chip programmable space) and 128

bytes of RAM space which is inbuilt, if desired 64KB of external memory can be

interfaced with the microcontroller. There are four parallel 8 bits ports which are easily

programmable as well as addressable.

 An on- chip crystal oscillator is integrated in the microcontroller which has crystal

frequency of 12MHz. In the microcontroller there is a serial input/output port which has

2 pins. Two timers of 16 bits are also incorporated in it; these timers can be employed as

timer for internal functioning as well as counter for external functioning.

The microcontroller comprise of 5 interrupt sources namely- Serial Port Interrupt, Timer

Interrupt 1, External Interrupt 0, Timer Interrupt 0, External Interrupt 1.

The programming mode of this micro-controller includes GPRs (general purpose

registers), SFRs (special function registers) and SPRs (special purpose registers).

INTERNAL ARCHITECHURE OF 8051 MICRO-CONTROLLER

 MicroProcessors & MicroControllers Lab

12

1. ALU

 All arithmetic and logical functions are carried out by the ALU.

 Addition, subtraction with carry, and multiplication come under arithmetic

 operations.

 Logical AND, OR and exclusive OR (XOR) come under logical operations.

2. Program Counter (PC)

 A program counter is a 16-bit register and it has no internal address. The basic

 function of program counter is to fetch from memory the address of the next

 instruction to be executed. The PC holds the address of the next instruction residing in

 memory and when a command is encountered, it produces that instruction. This way

 the PC increments automatically, holding the address of the next instruction.

3. Registers

 Registers are usually known as data storage devices. 8051 microcontroller has 2

 registers, namely Register A and Register B. Register A serves as an accumulator

 while Register B functions as a general purpose register. These registers are used to

 store the output of mathematical and logical instructions. The operations of addition,

 subtraction, multiplication and division are carried out by Register A. Register B is

 usually unused and comes into picture only when multiplication and division functions

 are carried out by Register A. Register A also involved in data transfers between

 the microcontroller and external memory.

PIN DIAGRAM OF 8051 MICRO-CONTROLLER

 PINOUT DESCRIPTION

Each of these pins can be configured as an input or an output.

Pins 1-8: Port 1

 MicroProcessors & MicroControllers Lab

13

Pin 21-28: Port 2

Pin 18, 19: X2 X1

Pin 9: RS

 A logic one on this pin disables the microcontroller and clears the contents of

 most registers. In other words, the positive voltage on this pin resets the

 microcontroller. By applying logic zero to this pin, the program starts execution

 from the beginning.

 Similar to port 1, each of these pins can serve as general input or

 output. Besides, all of them have alternative functions:

 Serial asynchronous communication input or Serial synchronous

 communication output.

 Serial asynchronous communication output or Serial synchronous

 Communication clock output.

 Interrupt 0 input.

 Interrupt 1 input.

 Counter 0 clock input.

 Counter 1 clock input.

 Write to external (additional) RAM.

 Read from external RAM.

 Internal oscillator input and output. A quartz crystal which specifies

 operating frequency is usually connected to these pins. Instead of it,

 miniature ceramics resonators can also be used for frequency stability.

 Later versions of microcontrollers operate at a frequency of 0 Hz up to

 over 50 Hz.

 Ground.

 If there is no intention to use external memory then these port pins are

 configured as general inputs/outputs. In case external memory is used, the

 higher address byte, i.e. addresses A8-A15 will appear on this port. Even

 though memory with capacity of 64Kb is not used, which means that not

 all eight port bits are used for its addressing, the rest of them are not

 available as inputs/outputs.

Pin 20: GND

Pin 17: RD

Pin 16: WR

Pin 15: T1

Pin 14: T0

Pin 13: INT1

Pin 12: INT0

Pin 11: TXD

Pin 10: RXD

Pins10-17: Port 3

 MicroProcessors & MicroControllers Lab

14

Pin 32-39: Port 0

Pin 31: EA

Pin 30: ALE

Pin 29: PSEN If external ROM is used for storing program then a logic zero (0) appears

 on it every time the microcontroller reads a byte from memory.

 Prior to reading from external memory, the microcontroller puts the lower

 address byte (A0-A7) on P0 and activates the ALE output. After receiving

 signal from the ALE pin, the external register (usually 74HCT373 or

 74HCT375 add-on chip) memorizes the state of P0 and uses it as a memory

 chip address. Immediately after that, the ALU pin is returned its previous

 logic state and P0 is now used as a Data Bus. As seen, port data

 multiplexing is performed by means of only one additional (and cheap)

 integrated circuit. In other words, this port is used for both data and address

 transmission.

 By applying logic zero to this pin, P2 and P3 are used for data and address

 transmission with no regard to whether there is internal memory or not. It

 means that even there is a program written to the microcontroller, it will not

 be executed. Instead, the program written to external ROM will be executed.

 By applying logic one to the EA pin, the microcontroller will use both

 memories, first internal then external (if exists).

 Similar to P2, if external memory is not used, these pins can be used as

 general inputs/outputs. Otherwise, P0 is configured as address output (A0-

 A7) when the ALE pin is driven high (1) or as data output (Data Bus) when

 the ALE pin is driven low (0).

 +5V power supply.

Pin 40: VCC

 MicroProcessors & MicroControllers Lab

15

OPERATION OF 8051 KIT

 Switch on power supply. Message “ANSHUMAN” will be displayed.

 Press “E” &then “ENTER” key.

 Select C=A & then press enter .default 6000 address will be displayed.

o Note: for changing address select C=A address.

 Now enter the program. At the end press “ENTER” key twice.

 Then C= will be displayed. Press “Q”.

 Press “S” & press enter.

 By pressing any key, select, EXT. memory, register. etc. &press “enter” key.

 For register, select general (AS, DPL, DPR etc),BANK etc. press enter.

 Now enter the inputs &press enter key

 Press “G” press “enter” key.

 BURST will be displayed. Press enter.

 ADDR will be displayed. Esc 6000&press enter.

 Wait, DONE message will be displayed.

 Now to view output, press “S”& press “ENTER”.

 MicroProcessors & MicroControllers Lab

16

PROCEDURE FOR PROGRAMS ON KEIL SOFTWARE

 Click on Keil uvision3.

 Click on „Project‟, create a new project and save it in a new folder choose target

option for Atmel and AT89C51.

 Go to File, click on new file, and type the program.

 Go to File, click on „save as‟, save the program with extension .asm on your

particular folder where you saved your project.

 Add your program to Source Group 1 which is at Target1 (Project workspace)

which is created after selecting the target in step 2.

 To do this right clicks on Source Group 1 and select „Add files to Source

Group 1‟.

 Search your code with .asm extension.

 Now Click on Translate current file tab present file toolbar and check for

errors. If error present then rectify.

 Click on Rebuild all target files to add our program to the AT89C51 target.

 Go to Debug, click on Start/Stop debug session.

 For giving input data: Go to view, click on Memory window.

 Enter inputs for corresponding memory addresses.

 For internal memory type: i:0x20 for example

 For external memory type: x:0x2000 for example

 Now click on “Run”, check the results.

 While in Debug don‟t make any changes in the program.

 After running, again click Start/Stop debug session to edit mode for changes in

program.

 MicroProcessors & MicroControllers Lab

17

USING 8085 GNU SIMULATOR

Demo Program (A):

ADDITION OF TWO 8 BIT NUMBERS

AIM: To implement assembly language program for addition of two 8-bit numbers.

APPARTUS: GNU Simulator, P.C.

ALGORITHM:

1) Start the program by loading the first data into Accumulator.
2) Move the data to a register (B register).
3) Get the second data and load into Accumulator.
4) Add the two register contents.
5) Check for carry.
6) Store the value of sum and carry in memory location.

7) Terminate the program.

PROGRAM:

 JMP START

 ; DATA

 ; CODE

START: NOP

OBSERVATION:

Input: 80 (4150)

 80 (4151)

Output: 00 (4152)
 01 (4153)

RESULT:

Thus the program to add two 8-bit numbers was executed.

MVI C, 00 Initialize C register to 00

LDA 4150 Load the value to Accumulator.

MOV B, A Move the content of Accumulator to B register.

LDA 4151 Load the value to Accumulator.

ADD B Add the value of register B to A

JNC LOOP Jump on no carry.

 INR C Increment value of register C

LOOP: STA 4152 Store the value of Accumulator (SUM).

MOV A, C Move content of register C to Acc.

STA 4153 Store the value of Accumulator (CARRY)

HLT Halt the program.

 MicroProcessors & MicroControllers Lab

18

Demo Program (B):

SUBTRATION OF TWO 8 BIT NUMBERS

AIM: To implement assembly language program for subtraction of two 8-bit numbers.

APPARTUS: GNU Simulator, P.C.

ALGORITHM:

1. Start the program by loading the first data into Accumulator.
2. Move the data to a register (B register).
3. Get the second data and load into Accumulator.
4. Subtract the two register contents.
5. Check for carry.
6. If carry is present take 2‟s complement of Accumulator.
7. Store the value of borrow in memory location.
8. Store the difference value (present in Accumulator) to a memory

9. location and terminate the program.

PROGRAM:

JMP START

 ; DATA

 ; CODE

START: NOP

OBSERVATION:

 Input : 06 (4150)

 02 (4151)

 Output: 04 (4152)

 01 (4153)

RESULT:

 Thus the program to subtract two 8-bit numbers was executed.

MVI C, 00 Initialize C to 00

LDA 4150 Load the value to Acc.

MOV B, A Move the content of Acc to B register.

LDA 4151 Load the value to Acc.

SUB B

JNC LOOP Jump on no carry.

CMA Complement Accumulator contents.

INR A Increment value in Accumulator.

INR C Increment value in register C

LOOP: STA 4152 Store the value of A-reg to memory address.

MOV A, C Move contents of register C to Accumulator.

STA 4153 Store the value of Accumulator memory address.

HLT Terminate the program.

 MicroProcessors & MicroControllers Lab

19

Exp.No.01 (a)

ASSEMBLY LANGUAGE PROGRAM TO MULTIPLY TWO 8-BIT

SIGNED/UNSIGNED NUMBERS

AIM: To implement assembly language program to multiply two 8-bit signed numbers.

APPARTUS: GNU Simulator and PC

ALGORITHM:

1) Start the program by loading HL register pair with address of memory
location.

2) Move the data to a register (B register).
3) Get the second data and load into Accumulator.
4) Add the two register contents.
5) Check for carry.
6) Increment the value of carry.
7) Check whether repeated addition is over and store the value of product

and carry in memory location.

8) Terminate the program.

PROGRAM:

JMP START

 ; DATA

 ; CODE

 START: NOP

 MVI D, 00 Initialize register D to 00

 MVI A, 00 Initialize Accumulator content to 00

 LXI H, 4150 LXI indicates for pair register & H – HL pair

 MOV B, M Get the first number in B – reg ; M [HLpair]

 INX H

 MOV C, M Get the second number in C- reg.

LOOP: ADD B Add content of A - reg to register B.

 JNC NEXT Jump on no carry to NEXT.

 INR D Increment content of register D

NEXT: DCR C Decrement content of register C.

 JNZ LOOP Jump on no zero to address

 STA 4152 Store the result in Memory

 MOV A, D

 STA 4153 Store the MSB of result in Memory
 HLT Terminate the program.

 MicroProcessors & MicroControllers Lab

20

OBSERVATION:

 Input : FF (4150)

 FF (4151)

 Output: 01 (4152)

 FE (4153)

RESULT:

 Thus the program to multiply two 8-bit numbers was executed.

TASK: Complete the unsigned multiplication of unsigned two 8-bit numbers

 MicroProcessors & MicroControllers Lab

21

Exp.No. 01(b)

ASSEMBLY LANGUAGE PROGRAM FOR SIGNED/UNSIGNED DIVISION OF

TWO NUMBERS

AIM: To implement assembly language program for division of two8-bit numbers.

APPARTUS: GNU Simulator, P.C.

ALGORITHM:

1) Start the program by loading HL register pair with address of memory location.
2) Move the data to a register(B register).
3) Get the second data and load into Accumulator.
4) Compare the two numbers to check for carry.
5) Subtract the two numbers.
6) Increment the value of carry .
7) Check whether repeated subtraction is over and store the value of product

and carry in memory location.

8) Terminate the program.

PROGRAM:

 JMP START

 ; DATA

 ; CODE

 START: NOP

 LXI H, 2050

 MOV B, M Get the dividend in B – reg.

 MVI C, 00 Clear C – reg for qoutient

 INX H

 MOV A, M Get the divisor in A – reg.

NEXT: SUB B Subtract A – reg from B- reg.

 JC LOOP Jump on carry to LOOP

 INR C Increment content of register C.

 JMP NEXT Jump to NEXT

LOOP: MOV A, C

 STA 2052 Store the quotient in memory

 HLT Terminate the program.

 MicroProcessors & MicroControllers Lab

22

OBSERVATION:

 Input : 02 (2050)

 08 (2051)

 Output: 04 (2052)

RESULT:

 Thus the program to division of two 8-bit numbers was executed.

TASK: Complete the unsigned division of unsigned two 8-bit numbers

 MicroProcessors & MicroControllers Lab

23

Exp.No. 02 (A)

ASSEMBLY LANGUAGE PROGRAM TO FIND AVERAGE OF 8-BIT NUMBERS IN

AN ARRAY

AIM: To implement ALP to find average of 8-bit numbers in array.

APPARTUS:

 GNU Simulator, P.C.

ALGORITHM:

1. Start the program by loading HL register pair with address of memory location.

2. Move the data to a B register.

3. Get the second data and load into Accumulator.

4. Compare the two numbers to check for carry.

5. Subtract the two numbers.

6. Increment the value of carry .

7. Check whether repeated subtraction is over and store the value of product and carry in

 memory location.

8. Terminate the program

PROGRAM:

JMP START

 ; DATA

 ; CODE

 START: NOP

 LXI H, 5000

 MVI C,10

MVI A, 00

MVI B,00

 MVI E,00

 NEXT: ADD M

 JNC SKIP

INR B

 SKIP: INX H

DCR C

JNZ NEXT

 MOV M,B

 MVI D,10

 LOOP1: SUB D

 JC LOOP2

 INR E

 JMP LOOP1

 LOOP2: MOV A,E

STA 5050

 HLT

RESULT:

Inputs:

5000 5001 5002 5003 5004 5005 5006 5007 5008 5009

01 02 03 04 05 06 07 08 09 02

Output: 5020(ext. memory location) – 04

 MicroProcessors & MicroControllers Lab

24

Exp.No. 2 (B)

ASSEMBLY LANGUAGE PROGRAM TO FIND LARGEST NUMBER IN AN

ARRAY

AIM: To implement ALP to find the largest number in the array.

APPARTUS:

 GNU Simulator, P.C.

ALGORITHM:

1) Load the address of the first element of the array in HL pair
2) Move the count to B – reg.
3) Increment the pointer
4) Get the first data in A – reg.
5) Decrement the count.
6) Increment the pointer
7) Compare the content of memory addressed by HL pair with that of A - reg.
8) If Carry = 0, go to step 10 or if Carry = 1 go to step 9
9) Move the content of memory addressed by HL to A – reg.
10) Decrement the count
11) Check for Zero of the count. If ZF = 0, go to step 6, or if ZF = 1 go to next step.
12) Store the largest data in memory.
13) Terminate the program.

PROGRAM:

JMP START

 ; DATA

 ; CODE

START: NOP

 LXI H, 2000

 MVI C,0AH

 MVI A,00H

 LOOP: CMP M ; compare M with A

 JNC SKIP

 MOV A,M

 SKIP: INX H

 DCR C

 JNZ LOOP

 MOV M,A

 HLT

 MicroProcessors & MicroControllers Lab

25

RESULT:

Inputs:

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

01 02 03 04 09 06 07 08 05 02

Output: A(Accumulator) – 09

Thus the program to find the largest number in an array of data was executed

 MicroProcessors & MicroControllers Lab

26

Exp.No. 2(B)(Contd…)

ASSEMBLY LANGUAGE PROGRAM TO FIND SMALLEST IN AN ARRAY

AIM: To implement ALP to find the smallest number in the array.

APPARTUS:

 GNU Simulator, P.C.

ALGORITHM:

1) Load the address of the first element of the array in HL pair
2) Move the count to C – reg.
3) Increment the pointer
4) Get the first data in A – reg.
5) Decrement the count.
6) Increment the pointer
7) Compare the content of memory addressed by HL pair with that of A - reg.
8) If carry = 1, go to step 10 or if Carry = 0 go to step 9
9) Move the content of memory addressed by HL to A – reg.
10) Decrement the count
11) Check for Zero of the count. If ZF = 0, go to step 6, or if ZF = 1 go to next step.
12) Store the smallest data in memory.

13) Terminate the program.

PROGRAM:

 JMP START

 ; DATA

 ; CODE

START: NOP

 LXI H,2000

 MVI C, 10

 MVI A, 50

 LOOP: CMP M

 JC SKIP

 MOV A, M

 SKIP: INX H

 DCR C

 JNZ LOOP

 MOV M,A

 HLT

 MicroProcessors & MicroControllers Lab

27

RESULT:

Inputs:

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

01 02 03 04 09 06 07 08 05 02

Output: A(Accumulator) – 01

Thus the program to find the smallest number in an array of data was executed

 MicroProcessors & MicroControllers Lab

28

Exp.No. 2 (C)

ASSEMBLY LANGUAGE PROGRAM TO FIND SQUARE ROOT OF A

GIVEN NUMBER

AIM: To implement ALP to find the square root of a given number.

APPARATUS:

 GNU Simulator, P.C.

ALGORITHM:

1. Assign 01 to register D and E

2. Load the value, stored at memory location 2050 in accumulator A

3. Subtract value stored at accumulator A from register D

4. Check if accumulator holds 0, if true then jump to step 8

5. Increment value of register D by 2

6. Increment value of register E by 1

7. Jump to step 3

8. Move value stored at register E in A

9. Store the value of A in memory location 2060

PROGRAM:

JMP START

 ; DATA

 ; CODE

START: NOP

 MVI D, 01
; initialize register D with 01; MVI move immediate

 data

 MVI E, 01 ; initialize register E with 01

 LDA 2050
; loads the content of memory location 2050 in

accumulator A

LOOP1: SUB D ; subtract value of D from A

 JZ LOOP2
; make jump to memory location LOOP2 if zero flag is

set

 INR D

; Increments value of register D by 1. Since it is used

two times,

 therefore value of D is incremented by 2

 INR D

 INR E ; increments value of register E by 1

 JMP LOOP1 ; make jump to memory location LOOP1

LOOP2: MOV A, E ; moves the value of register E in accumulator A

 STA 2060 ; stores value of A in 2060

 HLT
; stops executing the program and halts any further

execution

 MicroProcessors & MicroControllers Lab

29

OBSERVATION:

 Input: 09 (2050)

 Output: 03 (2060)

RESULT:

 Thus the program to find the square root of a given number was executed.

 MicroProcessors & MicroControllers Lab

30

Exp.No. 3(A)

ASSEMBLY LANGUAGE PROGRAM FOR ASCENDING ORDER OF NUMBERS IN

AN ARRAY

AIM: To implement ALP for ascending order of given numbers in an array.

APPARATUS: GNU Simulator, P.C.

ALGORITHM:

1. Initialize HL pair as memory pointer
2. Get the count at 4200 into C – register
3. Copy it in D – register (for bubble sort (N-1) times required)
4. Get the first value in A – register
5. Compare it with the value at next location.
6. If they are out of order, exchange the contents of A –register and Memory
7. Decrement D –register content by 1
8. Repeat steps 5 and 7 till the value in D- register become zero
9. Decrement C –register content by 1

10. Repeat steps 3 to 9 till the value in C – register becomes zero

PROGARM:

JMP START

 ; DATA

 ; CODE

START: NOP

REPEAT:

LXI
MOV
DCR

MOV

H,4200
C,M

C

D,C
 LXI H,4201

LOOP: MOV A,M

 INX H

 CMP M

 JC SKIP

 MOV B,M

 MOV M,A

 DCX H

 MOV M,B

 INX H

SKIP: DCR D

 JNZ LOOP

 DCR C

 JNZ REPEAT
 HLT

 MicroProcessors & MicroControllers Lab

31

OBSERVATION:

Input:

4200

05 (Array Size)

 4201 05

 4202 04

 4203 03

 4204 02

 4205 01

Output:

4200

05(Array Size)

 4201 01

 4202 02

 4203 03

 4204 04

 4205 05

RESULT:

 Thus the given array of data was arranged in ascending order.

 MicroProcessors & MicroControllers Lab

32

Exp.No. 3(B)

ASSEMBLY LANGUAGE PROGRAM FOR DESCENDING ORDER OF NUMBERS

IN AN ARRAY

AIM: To implement ALP for descending order of given numbers in an array.

APPARATUS: GNU Simulator, P.C.

ALGORITHM:

1. Initialize HL pair as memory pointer
2. Get the count at 4200 into C – register
3. Copy it in D – register (for bubble sort (N-1) times required)
4. Get the first value in A – register
5. Compare it with the value at next location.
6. If they are out of order, exchange the contents of A –register and Memory
7. Decrement D –register content by 1
8. Repeat steps 5 and 7 till the value in D- register become zero
9. Decrement C –register content by 1
10. Repeat steps 3 to 9 till the value in C – register becomes zero

PROGRAM:

 JMP START

 ; DATA

 ; CODE

START: NOP

REPEAT:

LXI
MOV
DCR

MOV

H,4200
C,M

C
D,C

 LXI H,4201

LOOP: MOV A,M

 INX H

 CMP M

 JNC SKIP

 MOV B,M

 MOV M,A

 DCX H

 MOV M,B

 INX H

SKIP: DCR D

 JNZ LOOP

 DCR C

 JNZ REPEAT

 HLT

 MicroProcessors & MicroControllers Lab

33

OBSERVATION:

Input:

4200

05 (Array Size)

 4201 01

 4202 02

 4203 03

 4204 04

 4205 05

Output:

4200

05(Array Size)

 4201 05

 4202 04

 4203 03

 4204 02

 4205 01

RESULT:

 Thus the given array of data was arranged in descending order.

 MicroProcessors & MicroControllers Lab

34

Exp.No. 04

ASSEMBLY LANGUAGE PROGRAM TO CONVERT BCD NUMBER TO SEVEN

SEGMENT

AIM: To implement ALP to convert the BCD number to seven segment number.

APPARATUS: GNU Simulator, P.C.

ALGORITHM:

1. Start.

2. Initialize the data segment.

3. Clear the base register.

4. Initialize the counter.

5. Rotate the number, check for „1‟.

6. Result is displayed.

7. Stop.

LOOKUP TABLE:

 Common Cathode Common Anode

BCD NUMBER
EQUIVALENT SEVEN

SEGMENT NUMBER

EQUIVALENT SEVEN

SEGMENT NUMBER

0 3F 40

1 06 79

2 5B 24

3 4F 30

4 66 19

5 6D 12

6 7D 02

7 07 78

8 7F 00

9 6F 10

 MicroProcessors & MicroControllers Lab

35

PROGRAM:

 JMP START

 ; DATA

 ; CODE

START: NOP

 LXI H, 6000 ; Initialize lookup table pointer

 LXI D, 6020 ; Initialize source memory pointer

 LXI B, 6050 ; Initialize destination memory pointer

 BACK: LDAX D ; Get the number load accumulator from memory

 pointed by external register

 MOV L, A ; A point to the 7-segment code

 MOV A, M ; Get the 7-segment code

 STAX B ; Store the result at destination memory location

 HLT ; End the program

RESULT:

 After assemble, enter the equivalent seven segment number in the given address

and also enter the source data in the given address i.e. 6020 -- 05

after debugging, check the result in the address 6050

 Output: 12 (6050)

Address
EQUIVALENT SEVEN

SEGMENT NUMBER

6000 40

6001 79

6002 24

6003 30

6004 19

6005 12

6006 02

6007 78

6008 00

6009 10

 MicroProcessors & MicroControllers Lab

36

USING 8085 KIT
Exp.No. 05

ASSEMBLY LANGUAGE PROGRAM TO GENERATE TRIANGULAR,

SQUARE & SAWTOOTH USING DAC

AIM: Write an 8085 program to interface 8255 PPI.

1. Generate saw tooth wave

2. triangular wave

3. Square wave using DAC interfacing

APPARATUS: 1) MP 8085 trainer kit

 2) SMPS

 3) DAC Interface module

 4) Power Supply (5V)

 5) 26 pin flat ribbon cable

 6) 4/8 wire relimate cable

 7) Oscilloscope

 8) CRO probes

5(A). GENERATION OF SAW TOOTH WAVE:-

ALGORITHM:

1. Intialization a control word for 8255, for it to operate in I/O mode and for ports A,B

 and C to operate in output mode.

2. Clear the accumulator content and output it.

3. Increment accumulator content and compare with FFH.

4. Jump if nor zero to step 2.

5. Continue the above steps.

PROGRAM:

 MicroProcessors & MicroControllers Lab

37

EXPECTED WAVEFORM:

 V

Amplitude

 time t

 period

EXPECTED RESULT:

 Amplitude = Frequency =

 Time Period =

5(B). TRIANGULAR WAVE GENERATION:

ALGORITHM:

1. Intialization a control word for 8255,for it to operate in I/O mode and for ports A, B

 and C to operate in output mode.

2. Clear the accumulator content and output it.

3. Increment accumulator content and compare with FFH

4. Jump if nor zero to step 2.

5. Decrement accumulator content.

6. Output it and compare with 00H and go to step5 if not zero.

7. Continue the above steps.

PROGRAM:

 MicroProcessors & MicroControllers Lab

38

EXPECTED WAVEFORM:

 V

 amplitude

 time period time

EXPECTED RESULT:

Amplitude = Frequency =

Time Period =

5(C). SQUARE WAVE FORM GENERATION

ALGORITHM:

 1.Intialization a control word for 8255, for it to operate in I/O mode and for ports A, B

 and C to operate in output mode.

2. Clear the accumulator content and output it.

3. Call delay subroutine.

4. More immediate accumulator with FFH and output it.

5. Continue the steps 2 to 4.

PROGRAM:

 MicroProcessors & MicroControllers Lab

39

EXPECTED WAVEFORM:

EXPECTED RESULT:

Amplitude = Frequency =

Time Period =

 MicroProcessors & MicroControllers Lab

40

USING 8051 KIT

Exp. No. 6(A) (i)

ASSEMBLY LANGUAGE PROGRAM FOR MULTIBYTE ADDITION

AIM: Write 8051 program to implement multiple byte addition (addition of two 32-bit no‟s).

APPARATUS:
1. MC 8051 trainer kit

2. SMPS

THEORY:

 Generally 8 bits are called a byte, 16 bits are called as word, 32 bits are called as

double word, and the data more than 4 byte is called as Multiple byte.

ALGORITHM:

1. Start.

2. Get the number 100.Get the first number.

3. Add result with second number.

4. Store in R0 (or) in first number register.

5. Repeat the step for given no. of inputs.

6. Output is displayed in R0, R1, R2, R3.

7. Stop.

PROGRAM:

ADDR MNEMONICS OPERANDS

6000 MOV A, R0

6001 ADD A, R4

6002 MOV R0, A

6003 MOV A, R1

6004 ADDC A, R5

6005 MOV R1, A

6006 MOV A, R2

6007 ADDC A, R6

6008 MOV R2, A

6009 MOV A, R3

600A ADDC A, R7

600B MOV R3, A

600C RET

EXPECTED RESULTS:

Inputs: R0 = 11h, R1 = 11h, R2 = 11h, R3 = 11h

 R4 = 22h, R5 = 22h, R6 = 22h, R7 = 22h

Outputs: R0 = 33h, R1 = 33h, R2 = 33h, R3 = 33h

 MicroProcessors & MicroControllers Lab

41

Exp. No. 6(A)(ii)

ASSEMBLY LANGUAGE PROGRAM FOR MULTIBYTE SUBTRACTION

AIM: Write 8051 program to implement subtraction of two 32 bit numbers.

APPARATUS:
1. MC 8051 trainer kit

2. SMPS

THEORY:
 Generally 8 bits are called a byte, 16 bits are called as word, 32 bits are called as

double word. Here we are subtracting two bytes, which are stored in the register. By using the

instruction SUBB we can subtract byte by byte.

ALGORITHM:

1. Start.

2. Get the first number.

3. Subtract with the second number.

4. Store result in R0.

5. Repeat the above steps for given no. of inputs.

6. Output is displayed in R0, R1, R2, R3.

7. Stop.

PROGRAM:

 ADDR MNEMONICS OPERAND

 6000 CLR C

6001 MOV A, R0

6002 SUBB A, R4

6003 MOV R0, A

6004 MOV A, R1

6005 SUBB A, R5

6006 MOV R1, A

6007 MOV A, R2

6008 SUBB A, R6

6009 MOV R2, A

600A MOV A, R3

600B SUBB A, R7

600C MOV R3, A

600D RET

EXPECTED RESULT:

Inputs: R0 = 55h, R1 = 55h, R2 = 55h, R3 = 55h

 R4 = 22h, R5 = 22h, R6 = 22h, R7 = 22h

Outputs: R0 = 33h, R1 = 33h, R2 = 33h, R3 = 33h

 MicroProcessors & MicroControllers Lab

42

Exp. No. 6(B)(i)

ASSEMBLY LANGUAGE PROGRAM FOR MULTIPLICATION OF 32-BIT

NUMBERS

AIM: Write 8051 program to implement multiplication.

APPARATUS:

1. MC 8051 trainer kit

2. SMPS

THEORY:

 After multiplication, if it is 16 bit multiplication the result will be stored in register

A and register B. If it is 8 bit multiplication then the result will be store in register A.

ALGORITHM:

1. Start.

2. Get the first number.

3. Store the number.

4. Get the second number.

5. Multiply A & B.

6. Increment data pointer.

7. Get the higher byte & lower byte of result.

8. Stop.

PROGRAM:

 ADDR MNEMONICS OPERANDS
 6000 MOV DPTR, #20A1

 6003 MOVX A, @DPTR

 6004 MOV F0, A

 6006 MOV DPTR, #20A0

 6009 MOVX A, @DPTR

 600A MUL AB

 600B MOV DPTR, #20A2

 600E MOVX @DPTR, A

 600F INC DPTR

 6010 MOV A, F0

 6012 MOVX @DPTR, A

 6013 RET

EXPECTED RESULT:

Inputs: 20A0 = 05h & 20A1 = 04h

Output: 20A2 = 14h

 MicroProcessors & MicroControllers Lab

43

Exp. No. 6(B)(ii)

ASSEMBLY LANGUAGE PROGRAM FOR DIVISION OF TWO 8 BIT NUMBERS

AIM: Write 8051 program to implement division operation.

APPARATUS:

1. MC 8051 trainer kit

2. SMPS

THEORY:

 After division the quotient is stored in register „A‟ and the remainder will be stored in

register „B‟.

ALGORITHM:

1. Start.

2. Get the first number.

3. Store the number.

4. Get the second number.

5. Divide A & B.

6. Increment data pointer.

7. Get the quotient, reminder & display.

8. Stop.

PROGRAM:

 ADDR MNEMONICS OPERANDS

 6000 MOV A, #00H

 6003 MOV DPTR, #20A0

 6004 MOVX A, @DPTR

 6006 MOV F0, A

 6009 MOV A, #00H

 600A INC DPTR

 600B MOVX A, @DPTR

 600C DIV A, B

 600D INC DPTR

 600E MOVX @DPTR, A

 6011 MOV A, F0

 6012 INC DPTR

 6013 MOVX @DPTR, A

 6014 RET

EXPECTED RESULT:

Inputs: 20A0 = 15h & 20A1 = 03h

Output: 20A2 = 07h & 20A3 = 00h

 MicroProcessors & MicroControllers Lab

44

Exp. No. 7(A)

ASSEMBLY LANGUAGE PROGRAM FOR EXCHANGE OF DATA

AIM: Write a program for exchange of data in 8051.

APPARATUS:

1. MC 8051 trainer kit

2. SMPS

ALGORITHM:

1. Start.

2. Get the first number in Accumulator

3. Get the second number in R0

4. Swap A, and exchange with R0.

5. Display the result.

6. Stop.

PROGRAM:

 ADDR MNEMONICS OPERANDS

 6000 MOV A, #C5H

 6002 MOV R0, #C6H

 6004 SWAP A

 6005 XCH A, R0

 6006 RET

EXPECTED RESULT:

„A‟ becomes 5Ch and moved to R0 = 5Ch

 R0 = C6h is moved to A = C6h

 MicroProcessors & MicroControllers Lab

45

Exp. No. 7(C)(i)

ASSEMBLY LANGUAGE PROGRAM FOR FINDING MAXIMUM NUMBER FROM

8-BIT TEN NUMBERS

AIM: Write a program for finding the maximum number from 8-bit ten numbers in 8051 kit.

APPARATUS:

3. MC 8051 trainer kit

4. SMPS

PROGRAM:

6000 MOV DPTR, #7000 ; initialize the pointer to memory where

 numbers are stored

6003 MOV R0, #0A ; initialize the counter

6005 MOV F0, #00 ; maximum = 0

6008 AGAIN: MOVX A, @DPTR ; get the number from the memory

6009 CJNE A, F0, 02 ; NE = 600E – 600C=02, compare number with

 maximum

600C AJMP 6012 ; address of SKIP = 6012, if equal go to SKIP

600E NE: JC 02 ; SKIP = 6012- 6010, if not equal check for

 carry, if carry go to SKIP

6010 MOV F0,A ; otherwise maximum = number

6012 SKIP: INC DPTR ; increment memory pointer

6013 DJNZ R0,F3 ; AGAIN = FF – (6013-6007), decrement

 count, if count = 0 stop, otherwise go to AGAIN

6015 RET

EXPECTED RESULT:

INPUT:
7000 08; 7003 05; 7006 04; 7009 00

7001 02; 7004 06; 7007 07;

7002 03; 7005 01; 7008 19;

OUTPUT

B=19h

 MicroProcessors & MicroControllers Lab

46

Forward Jump:

For SKIP and NE label=

 Address of location where to jump – address of location of next instruction after

jump instruction => 600E-600C=02

Backward Jump:

For AGAIN label=

No. of bytes= (address of location of the count)-(address of location where to jump)

 Count=FF- No. of bytes=FF-(6013-6007)=F3

 MicroProcessors & MicroControllers Lab

47

Exp. No. 7(C)(ii)

ASSEMBLY LANGUAGE PROGRAM FOR FINDING MINIMUM NUMBER FROM

8-BIT TEN NUMBERS

AIM: Write a program for finding the minimum number from 8-bit ten numbers in 8051 kit.

APPARATUS:

1. MC 8051 trainer kit

2. SMPS

PROGRAM:

6000 MOV DPTR, #7000 ; initialize the pointer to memory where

 numbers are stored

6003 MOV R0, #0A ; initialize the counter

6005 MOV F0, #FF ; minimum =FF

6008 AGAIN: MOVX A, @DPTR ; get the number from the memory

6009 CJNE A, F0, 02 ; NE = 600E – 600C=02, compare number with

 minimum

600C AJMP 6012 ; address of SKIP = 6012, if equal go to SKIP

600E NE: JNC 02 ; SKIP = 6012- 6010, if not equal check for

 carry, if carry go to SKIP

6010 MOV F0,A ; otherwise minimum = number

6012 SKIP: INC DPTR ; increment memory pointer

6013 DJNZ R0,F3 ; AGAIN = FF – (6013-6007), decrement

 count, if count = 0 stop, otherwise go to

 AGAIN

6015 RET

RESULT:

INPUT:
7000 08; 7003 05; 7006 04; 7009 05

7001 02; 7004 06; 7007 07;

7002 03; 7005 01; 7008 19;

OUTPUT:
 B=01h

 MicroProcessors & MicroControllers Lab

48

Exp. No. 8

ASSEMBLY LANGUAGE PROGRAM FOR REVERSE AND LOGICAL „OR‟

AIM: Write a program for reverse the numbers and apply logic instruction OR gate to the

given

 numbers using 8051kit.

APPARATUS:

1. MC 8051 trainer kit

2. SMPS

PROGRAM:

MOV DPL, #34 ; instead of dpl, type 82

MOV DPH, #12 ; instead of dph, type 83

MOV A, DPL

RL A

RL A

RL A

RL A

MOV DPL, A

MOV A, DPH

RL A

RL A

RL A

RL A

MOV DPH, A

ORL A, DPL

RET

EXPECTED RESULT:

Logical „OR‟ result for given numbers 43h & 21h is A = 63h

DPL= 43h

DPH =21h

 MicroProcessors & MicroControllers Lab

49

Exp. No. 9

ASSEMBLY LANGUAGE PROGRAM FOR “JUMP” & “CALL” INSTRUCTIONS

AIM: (a) Write a ALP to find the sum of values 79h, F5h and E2h using “JUMP‟ instruction

 and load the sum in R0 & R6. (in 8051kit)

 (b) Write a ALP to find the factorial of a given number using “CALL” & “RETURN”

 instructions.

APPARATUS:

1. MC 8051 trainer kit

2. SMPS

PROGRAM (A): USING “JUMP” INSTRUCTION

ADDRESS LABEL MNEUMONICS COMMNETS

6000 MOV A, #00 Clear Accumulator

6002 MOV R5, A Clear R5

6003 ADD A, #79 A = 0 + 79h = 79h

6005 JNC N1 If CY = 0, add next number

6007 INC R5 Else increment R5

6008 N1: ADD A, #05 A = 79h + F5h = 6Eh and CY = 1

600A JNC N2 If CY = 0, add next number

600C INC R5 Cy = 1 , then increment R5

600D N2: ADD A, #0E2 A = 6Eh + E2h = 50h and CY = 1

600F JNC If CY = 0, copy result

6011 INC R5 If CY = 1, increment R5

6012 OVER: MOV R0, A Now, R0 = 50h & R6 = 02h

6013 HERE: SJMP HERE Halt the program

RESULT:
 R0 = 50h & R6 = 02h

PROGRAM (B): USING “CALL” & “RETURN” INSTRUCTION

ADDRESS LABEL MNEUMONICS COMMNETS

8100 MOV A, #05 Copy 05h to Register A

8102 MOV R0, A Store 05h to Register R0

8103 CALL 9000 Call subprogram at 9000h

8106 HERE: SJMP HERE End main program

9000 CJNE R0, #01,9004 Compare and jump

9003 RET Return to main program

9004 DEC R0 Decrement R0

9005 MOV F0, R0 Move R0 to register B

9007 MUL AB Repeat multiplication

9008 JC 9000

900B AGAIN: SJMP AGAIN End subprogram

RESULT:
 A = 78h (factorial of a number 05)

 MicroProcessors & MicroControllers Lab

50

USING (KEIL Software) for 8051

Demo: (A) Program to find addition of two numbers.

 (B) Program of Multibyte Addition

Demo (A)

ASSEMBLY LANGUAGE PROGRAM FOR ADDITION OF TWO NUMBERS

AIM: Write an assembly language program for adding two 8-bit numbers using keil

 Software (AT89C51).

APPARATUS:

1. Keil software

2. P.C.

PROGRAM:

MOV A, #05H

MOV B,#02H

ADD A,B

END

RESULT:

In accumulator, a= 7h

 MicroProcessors & MicroControllers Lab

51

Demo (B):

ASSEMBLY LANGUAGE PROGRAM FOR MULTIBYTE ADDITION

AIM: Write an assembly language program for multibyte addition using keil software

(AT89C51).

APPARATUS:

1. Keil software

2. P.C.

PROGRAM:

MOV R0,#20H

MOV R1,#30H

MOV R3,#04H

CLR C

CLR A

AGAIN: MOV A,@R0

 ADDC A,@R1

 MOV @R1,A

 INC R0

 INC R1

 DJNZ R3,AGAIN

 END

RESULT:

Inputs:

 i: 0x20 -- 01h, 02h, 03h, 04h

 i: 0x30 -- 05h, 06h, 07h, 08h

Output:

 i: 0x30 -- 06h, 08h, 0Ah, 0Ch

 MicroProcessors & MicroControllers Lab

52

Exp. No. 10

ASSEMBLY LANGUAGE PROGRAM FOR ACTIVATING PORTS &

GENERATION OF SQUARE WAVE

AIM: Write an assembly language program for generating square waveform using keil

software (AT89C51).

APPARATUS:

1. Keil software

2. P.C.

PROGRAM(1):

MOV SP,#7H

BACK: CLR P1.0

ACALL DELAY

SETB P1.0

ACALL DELAY

SJMP BACK

DELAY:MOV R1,#0FFH

AGAIN:DJNZ R1,AGAIN

RET

END

PROGRAM(2):

MOV SP,#7H ; initialize stack pointer

 ; since we are using subroutine programe

BACK:MOV P1,#00H ; send 00h on port 1 to generate

 ; low level of square wave

ACALL DELAY ; wait for some time

MOV P1,#0FFH ; send ffh on port 1 to generate

 ; high level of square wave

ACALL DELAY ; wait for some time

SJMP BACK ; repeat the sequence

DELAY:MOV R1,#0FFH ; load count

AGAIN:DJNZ R1,AGAIN ; decrement count and repeat the process

 ; until count is zero

RET ; return to main programe

 MicroProcessors & MicroControllers Lab

53

EXPECTED RESULTS:

 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

Program (1) : Activating Individual PORT1 pin 0

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

Program (2) : Activating PORT1

 MicroProcessors & MicroControllers Lab

54

Exp. No. 11(A)(i)

ASSEMBLY LANGUAGE PROGRAM FOR ASCENDING ORDER OF A GIVEN

NUMBERS

AIM: Write an assembly language program for arranging in ascending/descending order

using keil software (AT89C51).

APPARATUS:

1. Keil software

2. P.C.

PROGRAM FOR ASCENDING ORDER:

 MOV R0,#5 ; INITIALIZE COUNTER 1

AGAIN: MOV DPTR,#2000H ; initialize memory pointer

 MOV R1,#4 ; initialize counter 2

BACK: MOV R2,DPL ; save lower byte of memory address

 MOVX A,@DPTR ; Get the num ber

 MOV B,A ; Save the number

 INC DPTR ; Increment the memory pointer

 MOVX A,@DPTR ; Get the next number

 CJNE A,B,n ; If not equal check for greater or less

 AJMP SKIP ; Otherwise go to skip

 n: JNC SKIP ;If

 MOV DPL,R2 ;Exchange

 MOVX @DPTR,A

 INC DPTR

 MOV A,B

 MOVX @dptr,A

SKIP: DJNZ R1,BACK ;If R1 not equal to 0 go to BACK

 DJNZ R0,AGAIN ;If R0 not equal to 0 go to AGAIN

RESULT:

Inputs:

 x: 0x2000 -- 05h, 02h, 01h, 04h

Output:

 x: 0x2000 -- 01h, 02h, 04h, 05h

 MicroProcessors & MicroControllers Lab

55

Exp. No. 11(A)(ii)

ASSEMBLY LANGUAGE PROGRAM FOR DESCENDING ORDER OF A GIVEN

NUMBERS

AIM: Write an assembly language program for arranging in ascending/descending order

using keil software (AT89C51).

APPARATUS:

1. Keil software

2. P.C.

PROGRAM FOR DESCENDING ORDER:

 MOV R0, #5 ; INITIALIZE COUNTER 1

AGAIN: MOV DPTR,#2000H ; initialize memory pointer

 MOV R1,#4 ; initialize counter 2

BACK: MOV R2,DPL ; save lower byte of memory address

 MOVX A,@DPTR ; Get the num ber

 MOV B,A ; Save the number

 INC DPTR ; Increment the memory pointer

 MOVX A,@DPTR ; Get the next number

 CJNE A,B,n ; If not equal check for greater or less

 AJMP SKIP ; Otherwise go to skip

 n: JC SKIP ;If

 MOV DPL,R2 ;Exchange

 MOVX @DPTR,A

 INC DPTR

 MOV A,B

 MOVX @dptr,A

SKIP: DJNZ R1,BACK ;If R1 not equal to 0 go to BACK

 DJNZ R0,AGAIN ;If R0 not equal to 0 go to AGAIN

RESULT:

Inputs:

 x: 0x2000 -- 05h, 02h, 01h, 04h

Output:

 x: 0x2000 -- 05h, 04h, 02h, 01h

 MicroProcessors & MicroControllers Lab

56

Exp. No. 11(B)

ASSEMBLY LANGUAGE PROGRAM FOR DATA TRANSFER

AIM: Write an assembly language program for block move from one address to another

address using keil software (AT89C51).

APPARATUS:

1. Keil software

2. P.C.

PROGRAM:

MOV R0,#20H

MOV R1,#30H

MOV R3,#10H

CLR A

AGAIN:MOV A,@R0

MOV @R1,A

INC R0

INC R1

DJNZ R3,AGAIN

END

RESULT:

Inputs:

 i: 0x20 -- 01h, 02h, 03h, 04h,05h,06h,07h,08h,09h,0Ah

Output:

 i: 0x30 -- 01h, 02h, 03h, 04h,05h,06h,07h,08h,09h,0Ah

 MicroProcessors & MicroControllers Lab

57

 MicroProcessors & MicroControllers Lab

58

 MicroProcessors & MicroControllers Lab

59

 MicroProcessors & MicroControllers Lab

60

 MicroProcessors & MicroControllers Lab

61

 MicroProcessors & MicroControllers Lab

62

