MICRO PROCESSORS & MICROCONTROLLERS
LAB (PC268EE)

LABORATORY MANUAL

VI SEM B.E.(EEE/EIE) AICTE-MC

DEPARTMENT OF ELECTRICAL ENGINEERING

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY
Banjara Hills Road No 3, Hyderabad 34
www.mjcollege.ac.in

2020-21

Prepared By: G. RAVI KIRAN, Asst. Professor

Demo:

&

()]

oo

\O

MicroProcessors & MicroControllers Lab

MICROPROCESSORS & MICROCONTROLLERS LAB
(EEE & EIE)
LIST OF EXPERIMENTS

Using GNU 8085 Simulator

(A) Addition of two 8 Bit Numbers.
(B) Subtraction of two 8 Bit Numbers.

(a) Programs for Signed/Unsigned Multiplication.
(b) Program for Signed/Unsigned Division.

(a) Program to find Average of 8 Bit Numbers in an Array.
(b) Program for finding the largest/smallest number in an Array.
(c) Program for finding the square root a given number.

Program for sorting the set of numbers.
(a) Program for arranging the numbers in ascending order.
(b) Program for arranging the numbers in descending order.

Programs for code conversion like BCD numbers to seven segment.

USING 8085 KIT

8255 — PPI: ALP to generate Triangular wave using DAC

(a) Program to generate Saw tooth wave form.
(b) Program to generate Triangular wave form.
(c) Program to generate Square wave form.

USING 8051 KIT

. Arithmetic Instructions: Multibyte Operations

(a) Program for addition/subtraction of two 16 bit numbers.
(b) Program for multiplication/division of two 16 bit/32 bit numbers.

Data Transfer — block move, exchange, sorting, finding largest number in an
array.

(a) Program for exchange of data.

(b) Program for sorting the set of numbers.

(c) Program for finding maximum/minimum number in an array.

. Boolean & Logical Instructions (Bit Manipulations)

(a) Program for reverse & logical ‘OR’ of a given number.

. Program for use of “JUMP” & “CAL” instructions.

MicroProcessors & MicroControllers Lab

USING (KEIL Software) for 8051

Demo: (a) Program to find addition of two numbers.
(b) Program of Multibyte Addition

10. Program for activating ports and generation of square wave.

11. (a) Program for ascending order/descending order of a given numbers
(b) Program for data transfer.

MicroProcessors & MicroControllers Lab

Faculty of Engineering, O.U. AICTE Model Curriculum with effect from Academic Year 2020-21
Course Code Course Title Core/Elective
PC268EE Microprocessor and Microcontrollers Lab Core
Contact Hours per Week
Prerequisite CIE EE Credits
L T P
- - - 2 25 50 1

Course Objectives
> Deyeloping of assembly level programs and providing the basics of the processors
> Toyprovide solid foundation on interfacing the external devices to the processor according to the user
requirements to create novel products and solutions for the real time problems.
» To assist the students with an academic environment needed for a successful professional career.

Course Outcomes
At the end of the course students will be able to
Familiarize with the assembly language programming.
Write programs for given task using different addressing modes.
Interface various 10 devices using 8255 PPI
Write programs using various interrupts.
Interface the microcontroller for some real lifeapplications.

YV V VY Y

List of Experiments:

8085 based:

Signed/unsigned multiplication and division.

Finding average, largest, square root, etc.

Sorting set of numbers.

Code conversion like BCD numbers into binary.

8255 PPI for interfacing LEDs.

8255 PPI for interfacing to generate triangular wave using DAC.

Using interrupts.

Interfacing seven segment display.

: Interfacing matrix keyboard.

8051 based:

Data transfer block move, exchange, sorting, finding largest element inarray.
Arithmetic instructions: multi byte operations.

Boolean & logical instructions (Bit manipulations).

Programs to generate delay, programs using serial port and on chip timer/counter.
Use of JUMP and CALL instructions.

Square wave generation using timers.

Interfacing of keyboard and 7-segment display module.

DAC interfacing for generation of sinusoidal wave.

© o N gk wdhE

O N o Ok whE

Note: At least five experiments for 8085 and at least five experiments for 8051.

MicroProcessors & MicroControllers Lab

INTRODUCTION TO MASM

GNUSIm8085 is a graphical simulator, assembler and debugger for the Intel
8085 microprocessor in Linux and Windows. It is among the 20 winners of the FOSS
India Awards announced on February, 2008. GNUSIm8085 was originally written by
Sridhar Ratna kumar in fall 2003 when he realized that no proper simulators existed for
Linux. Several patches, bug fixes and software packaging have been contributed by the
GNUSIm8085 community. GNUSIm8085 users are encouraged to contribute to the
simulator through coding, documenting, testing, translating and porting the simulator.
GNUSiIm8085 development is becoming active as of 09/2016.
Editor
1. Program editor with interactive input wizard for all the standard instructions
2. Syntax highlighting in editor to distinguish between instructions, operands,
comments etc.
3. A separate opcode view which displays assembled code in hex
Assembler
1. Support for all standard instructions of the 8085
2. Minimalistic support for three assembler directives (.equ, .db, .ds) to control data
locations, there exist no directives to directly control code locations
3. Code start is defined outside source code (“load me at" entry) - if not defined
(default), code is generated (strangely) from 4200h (instead from the real reset
vector 0000h)
4. Assembly results can be stored as listing file only (no binary file output)
Debugger
1. Complete view of registers and flags
2. Support for breakpoints
3. Step by step execution/debugging of program
4. Hex / Decimal Converter
5. Runtime inspection of stack and source code variables defined
6. Runtime inspection and manipulation of memory and I/O ports
Printing
1. Printing of program from editor as well as assembled hex code (known not to
work well in Windows)

Key Features of GNU 8085 Simulator

A simple editor component with syntax highlighting.

A keypad to input assembly language instructions with appropriate arguments.
Easy view of register contents.

Easy view of flag contents.

Hexadecimal <—> Decimal converter.

View of stack, memory and 1/O contents.

Support for breakpoints for program debugging.

Stepwise program execution.

One click conversion of assembly program to opcode listing.
Printing support.

Ul translated in various languages.

https://en.wikipedia.org/wiki/Computer_simulation
https://en.wikipedia.org/wiki/Assembly_language#Assembler
https://en.wikipedia.org/wiki/Debugger
https://en.wikipedia.org/wiki/Intel_8085
https://en.wikipedia.org/wiki/Intel_8085
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/w/index.php?title=FOSS_India_Awards&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=FOSS_India_Awards&action=edit&redlink=1
https://en.wikipedia.org/wiki/GNUSim8085#cite_note-5

MicroProcessors & MicroControllers Lab

8085 MICROPROCESSOR

Introduction

The 8085 microprocessor was made by Intel in mid 1970s. It was binary compatible
with 8080 microprocessor but required less supporting hardware thus leading to less
expensive microprocessor systems. It is a general purpose microprocessor capable of
addressing 64k of memory. The device has 40 pins, require a +5V power supply and can
operate with 3 MHz single phase clock. It has also a separate address space for up to 256
I/0 ports. The instruction set is backward compatible with its predecessor 8080 even
though they are not pin-compatible.

5
&
S
7.5

Q

o O~
= =< -
= Cmwmac =] =
STk @ 7
l Nerrupt control I I Senal 1O r.on‘.rnél

B-bit internal data bus

N b g 1 &]
o~ 5
Accumulator | | Temp reg| [Flag flip-fiops] |f | Instruction Breg (8)|Creg (B)
(Areg) (8) (8) (5) register (8) Dreg (B |Ereg (8) -
I 1 H Hreg ®|Lres @] |2
Asithmetic Irstruction zmk ponber - (::) >§‘
logical unit | decoder and rogram counter (18) E;;:.
J ALYy (@] [mechine cyclef fo o omenteridecrementer
1 G"‘-‘f‘-’lj*”“_l address latch {16)
Timing and control 3 4 4

Address Data/address
—={CLK pess it
—={ GEN Contrad Status DMA Heset buffer {8) buffer (8)
S FoEw =Q<=S lil
2IREISFEZIES AmA AD; = AE
& TITMWS address bus address/data bus
) lﬁ S
o

The 8085 has a 16 bit address bus which enables it to address 64 KB of
memory, a data bus 8 bit wide and control buses that carry essential signals for various
operations. It also has a built in register array which are usually labeled A(Accumulator),
B, C, D, E, H, and L. Further special-purpose registers are the 16-bit Program Counter
(PC), Stack Pointer (SP), and 8-bit flag register F. The microprocessor has three
maskable interrupts (RST 7.5, RST 6.5 and RST 5.5), one Non-Maskable interrupt
(TRAP), and one externally serviced interrupt (INTR). The RST n.5 interrupts refer to
actual pins on the processor a feature which permitted simple systems to avoid the cost
of a separate interrupt controller chip.

Control Unit

It generates signals within microprocessor to carry out the instruction, which has been
decoded. In reality causes certain connections between blocks of the processor be
opened or closed, so that data goes where it is required, and so that ALU operations
occur.

Arithmetic Logic Unit

The ALU performs the actual numerical and logic operation such as “add”, “subtract”,
“AND”, “OR”, etc. Uses data from memory and from Accumulator to perform
arithmetic and always stores the result of operation in the Accumulator.

MicroProcessors & MicroControllers Lab

Registers

The 8085 microprocessor includes six registers, one accumulator, and one flag register,
as shown in Fig 1. In addition, it has two 16-bit registers: the stack pointer and the
program counter. The 8085 has six general-purpose registers to store 8-bit data; these are
identified as B, C, D, E, H, and L as shown in Fig 1. They can be combined as register
pairs - BC, DE, and HL - to perform some 16-bit operations. The programmer can use
these registers to store or copy data into the registers by using data copy instructions.

Accumulator

The accumulator is an 8-bit register that is a part of arithmetic/logic unit (ALU). This
register is used to store 8-bit data and to perform arithmetic and logical operations. The
result of an operation is stored in the accumulator. The accumulator is also identified as
register A.

Flag Registers

The ALU includes five flip-flops, which are set or reset after an operation according to
data conditions of the result in the accumulator and other registers. They are called
Zero(Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags. The most
commonly used flags are Zero, Carry, and Sign. The microprocessor uses these flags to
test data conditions.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register is a
memory pointer. Memory locations have 16-bit addresses, and that is why this is a 16-bit
register. The microprocessor uses this register to sequence the execution of the
instructions. The function of the program counter is to point to the memory address from
which the next byte is to be fetched. When a byte (machine code) is being fetched, the
program counter is incremented by one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register used as a memory pointer. It points to a
memory location in R/W memory, called the stack. The beginning of the stack is defined
by loading 16-bit address in the stack pointer.

Instruction Register / Decoder

This is a temporary storage for the current instruction of a program. Latest instruction is
sent to here from memory prior to execution. Decoder then takes instruction and
“decodes” or interprets the instruction. Decoded instruction is then passed to next stage.

Memory Address Register (MAR)
It holds addresses received from PC for eg: of next program instruction. MAR feeds the
address bus with address of the location of the program under execution.

Control Generator

It generates signals within microprocessor to carry out the instruction which has been
decoded. In reality it causes certain connections between blocks of the processor to be
opened or closed, so that data goes where it is required, and so that ALU operations
occur.

MicroProcessors & MicroControllers Lab

Register Selector
This block controls the use of the register stack. Just a logic circuit which switches
between different registers in the set will receive instructions from Control Unit.

8085 System Bus

The microprocessor performs four operations primarily.
* Memory Read

* Memory Write

* /O Read

* [/O Write

All these operations are part of the communication processes between microprocessor
and peripheral devices. The 8085 performs these operations using three sets of
communication lines called buses - the address bus, the data bus and the control bus.

Address Bus

The address bus is a group of 16 lines. The address bus is unidirectional: bits flow only
in one direction — from the 8085 to the peripheral devices. The microprocessor uses the
address bus to perform the first function: identifying a peripheral or memory location.
Each peripheral or memory location is identified by a 16 bit address. The 8085 with its
16 lines is capable of addressing 64 K memory locations.

Data Bus

The data bus is a group of eight lines used for dataflow. They are bidirectional: data
flows in both direction between the 8085 and memory and peripheral devices. The 8
lines enable the microprocessor to manipulate 8-bit data ranging from 00 to FF.

Control Bus
The control bus consists of various single lines that carry synchronization signals. These
are not groups of lines like address of data bus but individual lines that provide a pulse
to indicate an operation. The 8085 generates specific control signal for each operation it
performs. These signals are used to identify a device type which the processor intends to
communicate.

8085 Pin Diagram

X1 a0 [V,
bl 3 M1 HoLp
RESET OUT [] 3 38 [HLDA
son [« 37 [CLK (oUT)
S0 5 36 []JRESETN
TRAP [6 35 [] READY
RST75 7 3¢ [100
RSTES [& 33 [8,
RSTE5 [@ 2 [dr0
INTR 10 8085A : [WR
A O 11 0 [AE
AD, [12 2[s
20 13 B,
,’-\Dz (g a3 ;__4
AD, 15 i
AD, [15 B[,
AD, 17 4 Ja,
AD,] 18 2 [da,
2D [1e 22 [A,
Ve [20 217 A,

MicroProcessors & MicroControllers Lab

8085 Pin Description
Properties

f Single + 5V Supply

f 4 Vectored Interrupts (One is Non Maskable)

f Serial In/Serial Out Port

f Decimal, Binary, and Double Precision Arithmetic

f Direct Addressing Capability to 64K bytes of memory

A8-A15 (Output 3 states)
Address Bus carries the most significant 8 bits of the memory address or the 8 bits of the
1/0 address; 3 stated during Hold and Halt modes.

ADO - AD 7 (Input/Output 3state)

Multiplexed Address/Data Bus carries Lower 8 bits of the memory address (or 1/O
address) appear on the bus during the first clock cycle of a machine state. It then
becomes the data bus during the second and third clock cycles. 3 stated during Hold and
Halt modes.

ALE (Output)

Address Latch Enable occurs during the first clock cycle of a machine state and enables
the address to get latched into the on chip latch of peripherals. The falling edge of ALE
IS set to guarantee setup and hold times for the address information. ALE can also be
used to strobe the status information. ALE is never 3 stated.

SO, S1 (Output)
Data Bus Status: Encoded status of the bus cycle

S1 SO

0 0 HALT
0 1 WRITE
1 0 READ
1 1 FETCH

RD (Output 3state)
READ indicates the selected memory or 1/0 device is to be read and that the Data Bus is
available for the data transfer.

WR (Output 3state)

WRITE indicates the data on the Data Bus is to be written into the selected memory or
1/0 location. Data is set up at the trailing edge of WR. 3 stated during Hold and Halt
modes.

READY (Input)

If Ready is high during a read or write cycle, it indicates that the memory or peripheral
is ready to send or receive data. If Ready is low, the CPU will wait for Ready to go high
before completing the read or write cycle.

MicroProcessors & MicroControllers Lab

HOLD (Input)

HOLD indicates that another Master is requesting the use of the address and data buses.
The CPU, upon receiving the Hold request, will relinquish the use of buses as soon as
the completion of the current machine cycle. Internal processing can continue. The
processor can regain the buses only after the Hold is removed. When the Hold is
acknowledged, the Address, Data, RD, WR, and IO/M lines are 3stated.

HLDA (Output)

HOLD ACKNOWLEDGE indicates that the CPU has received the Hold request and that
it will relinquish the buses in the next clock cycle. HLDA goes low after the Hold
request is removed. The CPU takes the buses one half clock cycle after HLDA goes low.

INTR (Input)

INTERRUPT REQUEST is used as a general purpose interrupt. It is sampled only using
the next to the last clock cycle of the instruction. If it is active, the Program Counter
(PC) will be inhibited from incrementing and an INTA will be issued. During this cycle
a RESTART or CALL instruction can be inserted to jump to the interrupt service
routine. The INTR is enabled and disabled by software. It is disabled by Reset and
immediately after an interrupt is accepted.

INTA (Output)

INTERRUPT ACKNOWLEDGE is used instead of (and has the same timing as) RD
during the Instruction cycle after an INTR is accepted. It can be used to activate the
8259 Interrupt chip or some other interrupt port.

RST 5.5/ RST 6.5/ RST 7.5
RESTART INTERRUPTS have the same timing as | NTR except they cause an internal
RESTART to be automatically inserted.

RST 7.5 - Highest Priority

RST 6.5

RST 5.5 2> Lowest Priority

The priority of these interrupts is ordered as shown above. These interrupts have a
higher priority than the INTR.

TRAP (Input)

Trap interrupt is a non-maskable restart interrupt. It is recognized at the same time as
INTR. It is unaffected by any mask or Interrupt Enable. It has the highest priority of any
interrupt.

RESET IN (Input)

Reset sets the Program Counter to zero and resets the Interrupt Enable and HLDA flip
flops. None of the other flags or registers (except the instruction register) are affected
The CPU is held in the reset condition as long as Reset is applied.

RESET OUT (Output)
It indicates that CPU is been reset. It used as a system RESET. The signal is
synchronized to the processor clock.

MicroProcessors & MicroControllers Lab

X1, X2 (Input)

Crystal or R/C network connections to set the internal clock generator X1 can also be an
external clock input instead of a crystal. The input frequency is divided by 2 to give the
internal operating frequency.

CLK (Output)
Clock Output is used as a system clock when a crystal or R/ C network is used as an
input to the CPU. The period of CLK is twice the X1, X2 input period.

10/M (Output)
IO/M indicates whether the Read/Write is to memory or I/O. It is tri stated during Hold
and Halt modes.

SID (Input)
Serial input data line: The data on this line is loaded into accumulator bit 7 whenever a
RIM instruction is executed.

SOD (output)
Serial output data line: The output SOD is set or reset as specified by the SIM
instruction.

Vee +5V supply.
V/ss Ground Reference

8085 Addressing modes
They are mainly classified into four:
» Immediate addressing.
» Register addressing.
» Direct addressing.
» Indirect addressing.

Immediate addressing
Data is present in the instruction. Load the immediate data to the destination provided.
Example: MVI R, data

Register addressing
Data is provided through the registers.
Example: MOV Rd, Rs

Direct addressing

It is used to accept data from outside devices to store in the accumulator or send the data

stored in the accumulator to the outside device. Accept the data from the port 00H and

store them into the accumulator or Send the data from the accumulator to the port 01H.
Example: IN 00H or OUT 01H

Indirect Addressing

In this mode the Effective Address is calculated by the processor and the contents of the
address (and the one following) are used to form a second address. The second address
is where the data is stored. Note that this requires several memory accesses; two
accesses to retrieve the 16-bit address and a further access (or accesses) to retrieve the
data which is to be loaded into the register.

MicroProcessors & MicroControllers Lab

Instruction Format of 8085:

Each Instruction Format of 8085 and Data Format of 8085 microprocessor has specific
information fields. These information fields of instructions are called elements of
instruction.

These are:

Operation code: The operation code field in the instruction specifies the
operation to be performed. The operation is specified by binary code, hence the
name operation code or simply opcode. For example, for 8085 processor
operation code for ADD B instruction is 80H.

Source / destination operand: The source/destination operand field directly
specifies the source/destination operand for the instruction. In the Instruction
Format of 8085, the instruction MOV A,B has B register contents as a source
operand and A register contents as a destination operand because this instruction
copies the contents of register B to register A.

Source operand address: We know that the operation specified by the
instruction may require one or more operands. The source operand may be in the
8085 register or in the memory. Many times the Instruction Format of 8085
specifies the address of the source operand so that operand(s) can be accessed
and operated by the 8085 according to the instruction.

In 8085, the source operand address for instruction ADD M is given by HL register pair.

Destination operand address: The operation executed by the 8085 may produce
result. Most of the times the result is stored in one of the operand. Such operand
is known as destination operand. The Instruction and Data Format of 8085 which
produce result specifies the destination operand address. In 8085, the destination
operand address for instruction INR M is given by HL register pair because INR
M instruction increments the contents of memory location specified by HL
register pair and stores the result in the same memory location.

Next instruction address : The next instruction address tells the 8085 from
where to fetch the next instruction after completion of execution of current
instruction. For BRANCH instructions the address of the next instruction is
specified within the instruction. However, for other instructions, the next
instruction to be fetched immediately follows the current instruction. For
example, in 8085, instruction after INR B follows it. The instruction JMP 2000H
specifies the next instruction address as 2000H.

Instruction Formats:

The Instruction Format of 8085 set consists of one, two and three byte instructions. The
first byte is always the opcode; in two-byte instructions the second byte is usually data;
in three byte instructions the last two bytes present address or 16-bit data.

1. One byte instruction:

FORMAT : Opcode

1 byte

For Example: MOV A, B whose opcode is 78H which is one byte. This Instruction and
Data Format of 8085 copies the contents of B register in A register.

MicroProcessors & MicroControllers Lab

2. Two byte instruction :

FORMAT : | Opcode Operand

2 bytes
For Example: MVI B, 02H. The opcode for this instruction is 06H and is always
followed by a byte data (02H in this case). This instruction is a two byte instruction

which copies immediate data into B register.

3. Three byte instruction :

FORMAT : | Opcode | Operand | Operand

3 bytes

For Example: JMP 6200H. The opcode for this instruction is C3H and is always
followed by 16 bit address (6200H in this case). This instruction is a three byte
instruction which loads 16 bit address into program counter.

Opcode Format of 8085:

The 8085A microprocessor has 8-bit opcodes. The opcode is unique for each Instruction
and Data Format of 8085 and contains the information about operation, register to be
used, memory to be used etc. The 8085A identifies all operations, registers and flags
with a specific code. For example, all internal registers are identified as shown in the
Tables 2.1(a) and 2.2(b).

Registers Code Register Pairs Code
| B 0 0 0 BC 0 0
mC 0 0 1 DE 0 1
D " 0 1 0 HL T 0
E 0 1 1 AF or SP 1 1
H 1 0 0 Table 2.1 (b)
L 1. & i
M (Memory) 1. ‘% 0 i
A | G A
Table 2.1(a)

Similarly, there are different codes for each opera are identified as follows :

MicroProcessors & MicroControllers Lab

Sr. Function Operation code
No. B, | Bo | B | By | By | B, | By | By
L_.l MVI r, data ‘ 0| O B D |11l 0
2 LXI rp, data 010 D|O0O] 00 1
3 MOV 1d, s 0|1]|D]|D|D]|S}S | S
Table 2.2

Note: DDD defines the destination register, SSS defines the source register and DD
defines the register pair.

Data Format of 8085 Microprocessor:

The operand is another name for data. It may appear in different forms :
o Addresses
o Numbers/Logical data and
o Characters

Addresses: The address is a 16-bit unsigned integer ,number used to refer a memory
location.

Numbers/Data: The 8085 supports following numeric data types.

o Signed Integer: A signed integer number is either a positive number or a
negative number. In 8085, 8-bits are assigned for signed integer, in which most
significant bit is used for sign and remaining seven bits are used for Sign bit 0
indicates positive number whereas sign bit 1 indicates negative number.

e Unsigned Integer: The 8085 microprocessor supports 8-bit unsigned integer.

e« BCD: The term BCD number stands for binary coded decimal number. It uses
ten digits from O through 9. The 8-bit register of 8085 can store two digit BCD

Characters: The 8085 uses ASCIlI code to represent characters. It is a 7-bit
alphanumeric code that represents decimal numbers, English alphabets, and other special
characters.

10

http://www.allaboutcircuits.com/

MicroProcessors & MicroControllers Lab

Introduction to Microcontroller 8051

The most universally employed set of microcontrollers come from the 8051 family. 8051
Microcontrollers persist to be an ideal choice for a huge group of hobbyists and experts.
In the course of 8051, the humankind became eyewitness to the most ground- breaking
set of microcontrollers. The original 8051 microcontroller was initially invented by Intel.
The two other members of this 8051 family are-

. 8052-This microcontroller has 3 timers & 256 bytes of RAM. Additionally it
has all the features of the traditional 8051 microcontroller. 8051 microcontroller is a
subset of 8052 microcontroller.

. 8031 - This microcontroller is ROM less, other than that it has all the features
of a traditional 8051 microcontroller. For execution an external ROM of size 64K bytes
can be added to its chip.

8051 microcontroller brings into play 2 different sorts of memory such as - NV-
RAM, UV - EPROM and Flash.

8051 is the basic microcontroller to learn embedded systems projects.

FEATURES OF 8051

8051 microcontroller is an eight bit microcontroller launched. It is available in 40 pin
DIP (dual inline package). It has 4kB of ROM (on- chip programmable space) and 128
bytes of RAM space which is inbuilt, if desired 64KB of external memory can be
interfaced with the microcontroller. There are four parallel 8 bits ports which are easily
programmable as well as addressable.

An on- chip crystal oscillator is integrated in the microcontroller which has crystal
frequency of 12MHz. In the microcontroller there is a serial input/output port which has
2 pins. Two timers of 16 bits are also incorporated in it; these timers can be employed as
timer for internal functioning as well as counter for external functioning.

The microcontroller comprise of 5 interrupt sources namely- Serial Port Interrupt, Timer
Interrupt 1, External Interrupt O, Timer Interrupt 0, External Interrupt 1.

The programming mode of this micro-controller includes GPRs (general purpose
registers), SFRs (special function registers) and SPRs (special purpose registers).

INTERNAL ARCHITECHURE OF 8051 MICRO-CONTROLLER

ri tic
and | psw] | Function
Logic Unit Registers
RAM
8-Bit Data and
Address Bus
2 —d

PC DPH ROM

o
AO-A7
0Oo-D7

Lateh
TTTTT

Port 0

o

Lateh
Portl
TTTT]

Latch

Port2

TTTTT

System
Timing Addresses

ALE —]
PS
XTAL1 % System 1€

Interrupts Bank 3 e
.

[TTTT
3

2
ac
® 3
wh
29
PR
Latch

.‘
Q
o
2

A ——— A

11

MicroProcessors & MicroControllers Lab

1. ALU
All arithmetic and logical functions are carried out by the ALU.
Addition, subtraction with carry, and multiplication come under arithmetic
operations.
Logical AND, OR and exclusive OR (XOR) come under logical operations.

2. Program Counter (PC)
A program counter is a 16-bit register and it has no internal address. The basic
function of program counter is to fetch from memory the address of the next
instruction to be executed. The PC holds the address of the next instruction residing in
memory and when a command is encountered, it produces that instruction. This way
the PC increments automatically, holding the address of the next instruction.

3. Registers
Registers are usually known as data storage devices. 8051 microcontroller has 2
registers, namely Register A and Register B. Register A serves as an accumulator
while Register B functions as a general purpose register. These registers are used to
store the output of mathematical and logical instructions. The operations of addition,
subtraction, multiplication and division are carried out by Register A. Register B is
usually unused and comes into picture only when multiplication and division functions
are carried out by Register A. Register A also involved in data transfers between
the microcontroller and external memory.

PIN DIAGRAM OF 8051 MICRO-CONTROLLER

\
P1O[]1 40 [] Vec
P1.1[]2 30 [] P0.0 (ADO)
P12[]3 38 [] P01 (AD1)
P13[14 37 [P0.2 (AD2)
P14[]5 36 [] P0.3 (AD3)
P15[]6 35 [] P0.4 (AD4)
P16[]7 34 [] P05 (AD5)
P1.7[]8 33 [] P0.6 (ADS)
RST[]9 32 [] P0.7 (AD7)
(RXD) P3.O[] 10 31 [] EANPP
(TXD) P3.1 [1 8051 30 [] ALE/PROG
(INTO) P3.2[] 12 29 [] PSEN
(INT1) P3.3[]13 28 [] P2.7 (A15)
(TO) P3.4[] 14 27 [] P26 (A14)
(T P35[] 15 26 [] P25 (A13)
(WR) P3.6 (] 16 25 [P24 (A12)
(RD) P3.7[17 24 [] P23 (A11)
XTAL2[]18 23 [] P22 (A10)
XTAL1 []19 22 [P2.1(A9)
GND [] 20 21 [] P2.0 (A8)

PINOUT DESCRIPTION

Pins 1-8: Port 1! pins can be configured as an input or an output.

12

MicroProcessors & MicroControllers Lab
Pin 9: RS
A logic one on this pin disables the microcontroller and clears the contents of
most registers. In other words, the positive voltage on this pin resets the
microcontroller. By applying logic zero to this pin, the program starts execution
from the beginning.

Pins10-17: Port3 Similar to port 1, each of these pins can serve as general input or
output. Besides, all of them have alternative functions:

Pin 10: RXD Serial asynchronous communication input or Serial synchronous
communication output.

Pin 11: TXD Serial asynchronous communication output or Serial synchronous
Communication clock output.

Pin 12: INTO Interrupt O input.

Pin 13: INT1 Interrupt 1 input.

Pin 14: TO Counter 0 clock input.

Pin 15: T1 Counter 1 clock input.

Pin 16: WR Write to external (additional) RAM.
Pin 17: RD Read from external RAM.

Pin 18, 19: X2 X1 Internal oscillator input and output. A quartz crystal which specifies
operating frequency is usually connected to these pins. Instead of it,
miniature ceramics resonators can also be used for frequency stability.
Later versions of microcontrollers operate at a frequency of 0 Hz up to
over 50 Hz.

Pin 20: GND Ground.

Pin 21-28: Port 2 If there is no intention to use external memory then these port pins are
configured as general inputs/outputs. In case external memory is used, the
higher address byte, i.e. addresses A8-A15 will appear on this port. Even
though memory with capacity of 64Kb is not used, which means that not
all eight port bits are used for its addressing, the rest of them are not
available as inputs/outputs.

13

Pin 29: PSEN

Pin 30: ALE

Pin 31: EA

Pin 32-39: Port 0

Pin 40: VCC

MicroProcessors & MicroControllers Lab

If external ROM is used for storing program then a logic zero (0) appears
on it every time the microcontroller reads a byte from memory.

Prior to reading from external memory, the microcontroller puts the lower
address byte (A0-A7) on PO and activates the ALE output. After receiving
signal from the ALE pin, the external register (usually 74HCT373 or
7T4HCT375 add-on chip) memorizes the state of PO and uses it as a memory
chip address. Immediately after that, the ALU pin is returned its previous
logic state and PO is now used as a Data Bus. As seen, port data
multiplexing is performed by means of only one additional (and cheap)
integrated circuit. In other words, this port is used for both data and address

transmission.

By applying logic zero to this pin, P2 and P3 are used for data and address
transmission with no regard to whether there is internal memory or not. It
means that even there is a program written to the microcontroller, it will not
be executed. Instead, the program written to external ROM will be executed.
By applying logic one to the EA pin, the microcontroller will use both
memories, first internal then external (if exists).

Similar to P2, if external memory is not used, these pins can be used as
general inputs/outputs. Otherwise, PO is configured as address output (AO-
AT) when the ALE pin is driven high (1) or as data output (Data Bus) when
the ALE pin is driven low (0).

+5V power supply.

14

MicroProcessors & MicroControllers Lab

OPERATION OF 8051 KIT

» Switch on power supply. Message “ANSHUMAN” will be displayed.

» Press “E” &then “ENTER” key.

A\

Select C=A & then press enter .default 6000 address will be displayed.
o Note: for changing address select C=A address.

Now enter the program. At the end press “ENTER” key twice.

Then C= will be displayed. Press “Q”.

Press “S” & press enter.

By pressing any key, select, EXT. memory, register. etc. &press “enter” key.
For register, select general (AS, DPL, DPR etc),BANK etc. press enter.
Now enter the inputs &press enter key

Press “G” press “enter” key.

BURST will be displayed. Press enter.

ADDR will be displayed. Esc 6000&press enter.

Wait, DONE message will be displayed.

vV Vv YV Vv VY V VvV VY V¥V VY V

Now to view output, press “S”& press “ENTER”.

15

A\

A\

MicroProcessors & MicroControllers Lab

PROCEDURE FOR PROGRAMS ON KEIL SOFTWARE

Click on Keil uvision3.
Click on ‘Project’, create a new project and save it in a new folder choose target
option for Atmel and AT89C51.
Go to File, click on new file, and type the program.
Go to File, click on ‘save as’, save the program with extension .asm on your
particular folder where you saved your project.
Add your program to Source Group 1 which is at Targetl (Project workspace)
which is created after selecting the target in step 2.

e To do this right clicks on Source Group 1 and select ‘Add files to Source

Group 1°.

e Search your code with .asm extension.
Now Click on Translate current file tab present file toolbar and check for
errors. If error present then rectify.
Click on Rebuild all target files to add our program to the AT89C51 target.
Go to Debug, click on Start/Stop debug session.
For giving input data: Go to view, click on Memory window.

e Enter inputs for corresponding memory addresses.

= For internal memory type: 1:0x20 for example
= For external memory type: x:0x2000 for example

Now click on “Run”, check the results.
While in Debug don’t make any changes in the program.
After running, again click Start/Stop debug session to edit mode for changes in

program.

16

Demo Program (A):

APPARTUS:

ALGORITHM:

PROGRAM:

START: NOP

MVI
LDA
MOV
LDA
ADD
JNC
INR
LOOP: STA
MOV
STA
HLT

OBSERVATION:

RESULT:

~N O Ol D W N
~— S~ ~—

; DATA

; CODE

MicroProcessors & MicroControllers Lab

USING 8085 GNU SIMULATOR

ADDITION OF TWO 8 BIT NUMBERS

AIM: To implement assembly language program for addition of two 8-bit numbers.

GNU Simulator, P.C.

Start the program by loading the first data into Accumulator.
Move the data to a register (B register).

Get the second data and load into Accumulator.

Add the two register contents.

Check for carry.

Store the value of sum and carry in memory location.
Terminate the program.

JMP START

C, 00
4150
B, A
4151

LOOP
4152

A C
4153

Initialize C register to 00

Load the value to Accumulator.

Move the content of Accumulator to B register.
Load the value to Accumulator.

Add the value of register B to A

Jump on no carry.

Increment value of register C

Store the value of Accumulator (SUM).
Move content of register C to Acc.
Store the value of Accumulator (CARRY)
Halt the program.

Input: 80 (4150)

80 (4151)

Output: 00 (4152)

01 (4153)

Thus the program to add two 8-bit numbers was executed.

17

Demo Program (B):

APPARTUS:

ALGORITHM:

©oo~Noook~whE

PROGRAM:

JMP START
; DATA

: CODE
START: NOP

MVI
LDA
MOV
LDA
SuB
JNC
CMA
INR
INR
LOOP: STA
MOV
STA
HLT

OBSERVATION:
Input :

Output:

RESULT:

MicroProcessors & MicroControllers Lab

SUBTRATION OF TWO 8 BIT NUMBERS

AIM: To implement assembly language program for subtraction of two 8-bit numbers.

GNU Simulator, P.C.

Start the program by loading the first data into Accumulator.
Move the data to a register (B register).
Get the second data and load into Accumulator.
Subtract the two register contents.
Check for carry.
If carry is present take 2’s complement of Accumulator.
Store the value of borrow in memory location.
Store the difference value (present in Accumulator) to a memory
location and terminate the program.
C,00 Initialize C to 00
4150 Load the value to Acc.
B, A Move the content of Acc to B register.
4151 Load the value to Acc.
B
LOOP Jump on no carry.
Complement Accumulator contents.
A Increment value in Accumulator.
C Increment value in register C
4152 Store the value of A-reg to memory address.
A C Move contents of register C to Accumulator.
4153 Storethe value of Accumulator memory address.
Terminate the program.
06 (4150)
02 (4151)
04 (4152)
01 (4153)

Thus the program to subtract two 8-bit numbers was executed.

18

MicroProcessors & MicroControllers Lab

Exp.No.01 (a)

ASSEMBLY LANGUAGE PROGRAM TO MULTIPLY TWO 8-BIT
SIGNED/UNSIGNED NUMBERS

AIM: To implement assembly language program to multiply two 8-bit signed numbers.
APPARTUS: GNU Simulator and PC

ALGORITHM:

1) Start the program by loading HL register pair with address of memory

location.

) Move the data to a register (B register).
) Get the second data and load into Accumulator.
) Add the two register contents.
) Check for carry.
)
)

Increment the value of carry.

Check whether repeated addition is over and store the value of product
and carry in memory location.

8) Terminate the program.

PROGRAM:
JMP START
; DATA
; CODE
START: NOP
MVI D, 00 Initialize register D to 00
MVI A, 00 Initialize Accumulator content to 00
LXI H, 4150 LXI indicates for pair register & H — HL pair
MOV B, M Get the first number in B —reg ; M- [HLpair]
INX H
MOV C,M Get the second number in C- reg.
LOOP: ADD B Add content of A - reg to register B.
JNC NEXT Jump on no carry to NEXT.
INR D Increment content of register D
NEXT: DCR C Decrement content of register C.
JNZ LOOP Jump on no zero to address
STA 4152 Store the result in Memory
MOV A D
STA 4153 Store the MSB of result in Memory
HLT Terminate the program.

19

MicroProcessors & MicroControllers Lab

OBSERVATION:
Input: FF (4150)
FF (4151)
Output: 01 (4152)
FE (4153)

RESULT:

Thus the program to multiply two 8-bit numbers was executed.

TASK: Complete the unsigned multiplication of unsigned two 8-bit numbers

20

MicroProcessors & MicroControllers Lab

Exp.No. 01(b)

ASSEMBLY LANGUAGE PROGRAM FOR SIGNED/UNSIGNED DIVISION OF
TWO NUMBERS

AIM: To implement assembly language program for division of two8-bit numbers.

APPARTUS: GNU Simulator, P.C.

ALGORITHM:

Start the program by loading HL register pair with address of memory location.
Move the data to a register(B register).

Get the second data and load into Accumulator.

Compare the two numbers to check for carry.

Subtract the two numbers.

Increment the value of carry .

Check whether repeated subtraction is over and store the value of product

and carry in memory location.

8) Terminate the program.

~N O Ol B W N
~—

PROGRAM:
JMP START
; DATA
; CODE
START: NOP
LXI H, 2050
MOV B, M Get the dividend in B — reg.
MVI C, 00 Clear C —reg for goutient
INX H
MOV AM Get the divisor in A —reg.
NEXT: SUB B Subtract A — reg from B- reg.
JC LOOP Jump on carry to LOOP
INR C Increment content of register C.
JMP NEXT Jump to NEXT
LOOFP: MOV A C
STA 2052 Store the quotient in memory
HLT Terminate the program.

21

MicroProcessors & MicroControllers Lab

OBSERVATION:
Input: 02 (2050)
08 (2051)
Output: 04 (2052)

RESULT:

Thus the program to division of two 8-bit numbers was executed.

TASK: Complete the unsigned division of unsigned two 8-bit numbers

22

MicroProcessors & MicroControllers Lab
Exp.No. 02 (A)

ASSEMBLY LANGUAGE PROGRAM TO FIND AVERAGE OF 8-BIT NUMBERS IN
AN ARRAY

AIM: To implement ALP to find average of 8-bit numbers in array.

APPARTUS:
GNU Simulator, P.C.

ALGORITHM:

. Start the program by loading HL register pair with address of memory location.

. Move the data to a B register.

. Get the second data and load into Accumulator.

. Compare the two numbers to check for carry.

. Subtract the two numbers.

. Increment the value of carry .

. Check whether repeated subtraction is over and store the value of product and carry in
memory location.

8. Terminate the program

~No ok~ WN -

PROGRAM:
JMP START
; DATA
: CODE
START: NOP
LXI H, 5000
MVI C,10
MVI A, 00
MVI B,00
MVI E,00
NEXT: ADDM
JNC SKIP
INR B
SKIP: INX H
DCRC
JNZ NEXT
MOV M,B
MVI D,10
LOOP1: SUBD
JC LOOP2
INR E
JMP LOOP1
LOOP2: MOV AE
STA 5050
HLT
RESULT:
Inputs:
5000 | 5001 | 5002 | 5003 | 5004 | 5005 | 5006 | 5007 | 5008 | 5009
01 02 03 04 05 06 07 08 09 02
Output: 5020(ext. memory location) — 04

23

MicroProcessors & MicroControllers Lab

Exp.No. 2 (B)

ASSEMBLY LANGUAGE PROGRAM TO FIND LARGEST NUMBER IN AN
ARRAY

AIM: To implement ALP to find the largest number in the array.

APPARTUS:
GNU Simulator, P.C.

ALGORITHM:

Load the address of the first element of the array in HL pair

Move the count to B —reg.

Increment the pointer

Get the first data in A —reg.

Decrement the count.

Increment the pointer

Compare the content of memory addressed by HL pair with that of A - reg.
If Carry =0, go to step 10 or if Carry = 1 go to step9

Move the content of memory addressed by HL to A —reg.

Decrement the count

Check for Zero of the count. If ZF =0, go to step 6, or if ZF = 1 go to next step.
Store the largest data in memory.

Terminate the program.

P PP P2 O00~NO Ol WwN K-
W N P O o —

~—— — — ——

PROGRAM:

JMP START
; DATA

: CODE
START: NOP
LX1 H, 2000
MVI C,0AH
MVI1 A,00H
LOOP: CMP M ; compare M with A
JNC SKIP
MOV AM
SKIP: INXH
DCRC
JNZ LOOP
MOV M,A
HLT

24

MicroProcessors & MicroControllers Lab

RESULT:

Inputs:
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
01 02 03 04 09 06 07 08 05 02

Output: A(Accumulator) — 09

Thus the program to find the largest number in an array of data was executed

25

MicroProcessors & MicroControllers Lab

Exp.No. 2(B)(Contd...)

ASSEMBLY LANGUAGE PROGRAM TO FIND SMALLEST IN AN ARRAY

AIM: To implement ALP to find the smallest number in the array.

APPARTUS:
GNU Simulator, P.C.

ALGORITHM:

1) Load the address of the first element of the array in HL pair

2) Move the count to C —reg.

3) Increment the pointer

4) Get the first data in A —reg.

5) Decrement the count.

6) Increment the pointer

7) Compare the content of memory addressed by HL pair with that of A - reg.
8) Ifcarry=1, gotostep 10 or if Carry = 0 go to step9

9) Move the content of memory addressed by HL to A —reg.

10) Decrement the count

11) Check for Zero of the count. If ZF = 0, go to step 6, or if ZF = 1 go to next step.
12) Store the smallest data in memory.

13) Terminate the program.

~—— — — —

PROGRAM:

JMP START
; DATA

; CODE
START: NOP
LXI1 H,2000
MVIC, 10
MVI A, 50
LOOP: CMP M
JC SKIP
MOV A, M
SKIP: INXH
DCRC
JNZ LOOP
MOV M,A
HLT

26

MicroProcessors & MicroControllers Lab
RESULT:

Inputs:

2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009
01 02 03 04 09 06 07 08 05 02

Output: A(Accumulator) — 01

Thus the program to find the smallest number in an array of data was executed

27

Exp.No. 2 (C)

MicroProcessors & MicroControllers Lab

ASSEMBLY LANGUAGE PROGRAM TO FIND SQUARE ROOT OF A

APPARATUS:

ALGORITHM:

Jump to step 3

CoNo~LNE

PROGRAM:

JMP START
; DATA

; CODE
START: NOP

MVI D, 01

MVI E, 01

LDA 2050
LOOP1: SUBD

JZ LOOP2

INR D

INR D

INR E

JMP LOOP1
LOOP2: MOV A, E

STA 2060

HLT

GIVEN NUMBER

AIM: To implement ALP to find the square root of a given number.

GNU Simulator, P.C.

Assign 01 to register D and E

Load the value, stored at memory location 2050 in accumulator A
Subtract value stored at accumulator A from register D

Check if accumulator holds 0, if true then jump to step 8
Increment value of register D by 2

Increment value of register E by 1

Move value stored at register E in A
Store the value of A in memory location 2060

; initialize register D with 01; MVI - move immediate
data
; initialize register E with 01
; loads the content of memory location 2050 in
accumulator A
; subtract value of D from A
; make jump to memory location LOOP?2 if zero flag is
set
; Increments value of register D by 1. Since it is used
two times,
therefore value of D is incremented by 2

; increments value of register E by 1

; make jump to memory location LOOP1

; moves the value of register E in accumulator A

; stores value of A in 2060

; stops executing the program and halts any further
execution

28

MicroProcessors & MicroControllers Lab

OBSERVATION:

Input: 09 (2050)
Output: 03 (2060)
RESULT:

Thus the program to find the square root of a given number was executed.

29

MicroProcessors & MicroControllers Lab

Exp.No. 3(A)

ASSEMBLY LANGUAGE PROGRAM FOR ASCENDING ORDER OF NUMBERS IN
AN ARRAY

AIM: To implement ALP for ascending order of given numbers in an array.

APPARATUS: GNU Simulator, P.C.

ALGORITHM:

1. Initialize HL pair as memory pointer

2. Get the count at 4200 into C —register

3. Copy itin D —register (for bubble sort (N-1) times required)

4. Get the first value in A —register

5. Compare it with the value at next location.

6. If they are out of order, exchange the contents of A —register and Memory
7. Decrement D —register content by 1

8. Repeat steps 5 and 7 till the value in D- register become zero

9. Decrement C —register content by 1

10. Repeat steps 3 to 9 till the value in C — register becomes zero

PROGARM:
JMP START
; DATA
: CODE
START: NOP

LXI H,4200
MOV C,M
DCR C

REPEAT: MOV D,C
LXI H,4201

LOOP: MOV AM
INX H
CMP M
JC SKIP
MOV B,M
MOV M,A
DCX H
MOV M,B
INX H

SKIP: DCR D
JNZ LOOP
DCR C
INZ REPEAT
HLT

30

MicroProcessors & MicroControllers Lab

OBSERVATION:

Input: 4200 05 (Array Size)
4201 05
4202 04
4203 03
4204 02
4205 01
Output: 4200 05(Array Size)
4201 01
4202 02
4203 03
4204 04
4205 05
RESULT:

Thus the given array of data was arranged in ascending order.

31

Exp.No. 3(B)

MicroProcessors & MicroControllers Lab

ASSEMBLY LANGUAGE PROGRAM FOR DESCENDING ORDER OF NUMBERS

IN AN ARRAY

AIM: To implement ALP for descending order of given numbers in an array.

APPARATUS: GNU Simulator, P.C.

ALGORITHM:
1. Initialize HL pair as memory pointer
2. Get the count at 4200 into C —register
3. Copy itin D —register (for bubble sort (N-1) times required)
4, Get the first value in A — register
5. Compare it with the value at next location.
6. If they are out of order, exchange the contents of A —register and Memory
1. Decrement D —register content by 1
8. Repeat steps 5 and 7 till the value in D- register become zero
9. Decrement C —register content by 1
10. Repeat steps 3 to 9 till the value in C — register becomes zero
PROGRAM:
JMP START
; DATA
; CODE
START: NOP
LXI H,4200
MOV C,M
DCR C
REPEAT: MOV D,C
LXI H,4201
LOOP: MOV AM
INX H
CMP M
JNC SKIP
MOV B,M
MOV M,A
DCX H
MOV M,B
INX H
SKIP: DCR D
INZ LOOP
DCR C
JNZ REPEAT
HLT

32

MicroProcessors & MicroControllers Lab

OBSERVATION:

Input: 4200 05 (Array Size)
4201 01
4202 02
4203 03
4204 04
4205 05

Output: 4200 05(Array Size)
4201 05
4202 04
4203 03
4204 02
4205 01

RESULT:

Thus the given array of data was arranged in descending order.

33

Exp.No. 04

MicroProcessors & MicroControllers Lab

ASSEMBLY LANGUAGE PROGRAM TO CONVERT BCD NUMBER TO SEVEN

SEGMENT

AIM: To implement ALP to convert the BCD number to seven segment number.

APPARATUS: GNU Simulator, P.C.
ALGORITHM:
1. Start.
2. Initialize the data segment.
3. Clear the base register.
4. Initialize the counter.
5. Rotate the number, check for “1°.
6. Result is displayed.
7. Stop.
LOOKUP TABLE:
Common Cathode Common Anode
EQUIVALENT SEVEN EQUIVALENT SEVEN
BCD NUMBER SEGMENT NUMBER SEGMENT NUMBER
0 3F 40
1 06 79
2 5B 24
3 4F 30
4 66 19
5 6D 12
6 7D 02
7 07 78
8 7F 00
9 6F 10
a a
b b a
Do—D c .
Co—]C q a 4 Ib
B—1B = e |
e C
Ao—I A : '
Clock g d
BCD to 7 Segment 7- Segment
Decoder LED Display

34

MicroProcessors & MicroControllers Lab

PROGRAM:
JMP START
; DATA
: CODE
START: NOP
LXI H, 6000 ; Initialize lookup table pointer
LXI D, 6020 ; Initialize source memory pointer
LXI B, 6050 ; Initialize destination memory pointer
BACK: LDAX D ; Get the number - load accumulator from memory
pointed by external register
MOV L, A ; A point to the 7-segment code
MOV A/ M ; Get the 7-segment code
STAX B ; Store the result at destination memory location
HLT ; End the program
RESULT:
After assemble, enter the equivalent seven segment number in the given address
EQUIVALENT SEVEN
Address SEGMENT NUMBER

6000 40

6001 79

6002 24

6003 30

6004 19

6005 12

6006 02

6007 78

6008 00

6009 10

and also enter the source data in the given address i.e. 6020 -- 05
after debugging, check the result in the address 6050

Output: 12 (6050)

35

MicroProcessors & MicroControllers Lab

USING 8085 KIT
Exp.No. 05

ASSEMBLY LANGUAGE PROGRAM TO GENERATE TRIANGULAR,
SOQUARE & SAWTOOTH USING DAC

AIM: Write an 8085 program to interface 8255 PPI.
1. Generate saw tooth wave
2. triangular wave
3. Square wave using DAC interfacing

APPARATUS: 1) MP 8085 trainer kit
2) SMPS
3) DAC Interface module
4) Power Supply (5V)
5) 26 pin flat ribbon cable
6) 4/8 wire relimate cable
7) Oscilloscope
8) CRO probes

5(A). GENERATION OF SAW TOOTH WAVE:-

ALGORITHM:

1. Intialization a control word for 8255, for it to operate in 1/0O mode and for ports A,B
and C to operate in output mode.

2. Clear the accumulator content and output it.

3. Increment accumulator content and compare with FFH.

4. Jump if nor zero to step 2.

5. Continue the above steps.

PROGRAM:

ADDRESS | LABEL | MNEMONICS | OPCODE/OPERAND
CeO0 MVI A, B0 JE &l
Ca02 OUT CHR D306
CRO4 START |MVI A,008 | 3E00
CEOE REPEAT | OUT PORTA | D308
Ce08 INR A 3C
CE09 CPI FFy FEFF
Calb JNZ REPEAT C206 Ck
CalE MVI 2,00y JE 00
Ce10 OUT PORTA 0303
CE12 JMP START C304 Ck

36

MicroProcessors & MicroControllers Lab

EXPECTED WAVEFORM:

H

Amplitud;T

EXPECTED RESULT:

—,
by

“Tme
period

Amplitude = Frequency =

Time Period =

5(B). TRIANGULAR WAVE GENERATION:

ALGORITHM:
1. Intialization a control word for 8255,for it to operate in 1/O mode and for ports A, B
and C to operate in output mode.

2. Clear the accumulator content and outpult it.

3. Increment accumulator content and compare with FFH

4. Jump if nor zero to step 2.

5. Decrement accumulator content.

6. Output it and compare with 00H and go to step5 if not zero.

7. Continue the above steps.

PROGRAM:

ADDRESS LABEL | MNEMONICS | OPCODE/OPERAND

C500 MVI A,80, 3E 80
C502 OUT CWR D3 DB
C504 START MVI A,00;4 3E 00
C506 POS OUT PORTA D3 D8
C508 INR A 3C
C509 CPI FF, FE FF
C50B JNZ POS C206C3
C50E NEG DCR A 3D
C30F OUT PORTA D3 D8
Co11 CPI 004 FE 00
C513 JNZ NEG C20EC3
C516 JMP START C304C5

37

MicroProcessors & MicroControllers Lab

EXPECTED WAVEFORM:

Vi

amplitudeT

v

time period time

EXPECTED RESULT:

Amplitude = Frequency =

Time Period =

5(C). SOQOUARE WAVE FORM GENERATION

ALGORITHM:

1.Intialization a control word for 8255, for it to operate in 1/0 mode and for ports A, B
and C to operate in output mode.

2. Clear the accumulator content and output it.

3. Call delay subroutine.

4. More immediate accumulator with FFH and output it.

5. Continue the steps 2 to 4.

PROGRAM:

ADDRESS LABEL MNEMONICS | OPCODE/OPERAND
C800 MVI A, 804 3E 80
C802 OUT CWR D3 DB
Cc804 REPEAT MVI A,00, 3E 00
C806 OUT PORTA D3 D8
C808 CALL DELAY CD15C8
C80B MVI A, FFy 3E FF
C8oD OUT PORTA D3 D8
C80F CALL DELAY CD15C8
C812 JMP REPEAT C304C8
C815 DELAY MVI C,85; 0E 85
C817 AGAIN DCR C oD
C818 JNZ AGAIN C217C8
C81B RET C9

38

MicroProcessors & MicroControllers Lab

EXPECTED WAVEFORM:

SQUARE WAVE

EXPECTED RESULT:

Amplitude = Frequency =

Time Period =

39

MicroProcessors & MicroControllers Lab

USING 8051 KIT

Exp. No. 6(A) (i)

ASSEMBLY LANGUAGE PROGRAM FOR MULTIBYTE ADDITION

AIM: Write 8051 program to implement multiple byte addition (addition of two 32-bit no’s).

APPARATUS:
1. MC 8051 trainer kit
2. SMPS

THEORY:
Generally 8 bits are called a byte, 16 bits are called as word, 32 bits are called as
double word, and the data more than 4 byte is called as Multiple byte.

ALGORITHM:

1. Start.

2. Get the number 100.Get the first number.

3. Add result with second number.

4. Store in Rg (or) in first number register.

5. Repeat the step for given no. of inputs.

6. Output is displayed in Ry, R1, Ry, Rs.

7. Stop.

PROGRAM:

ADDR MNEMONICS OPERANDS
6000 MOV A Ro
6001 ADD A Ry
6002 MOV Ro, A
6003 MOV A R;
6004 ADDC A Rs
6005 MOV Ri, A
6006 MOV A R;
6007 ADDC A, Rg
6008 MOV Ro, A
6009 MOV A R3
600A ADDC A R7
600B MOV Rs, A
600C RET

EXPECTED RESULTS:

Inputs: Rg=11h, R; =11h, R, =11h, R3=11h
R4 = 22h, R5 = 22h, Rs = 22h, R7 =22h

OUtQUtS: Ro = 33h, R, = 33h, R, = 33h, R; = 33h

40

MicroProcessors & MicroControllers Lab

Exp. No. 6(A)(ii)

ASSEMBLY LANGUAGE PROGRAM FOR MULTIBYTE SUBTRACTION

AIM: Write 8051 program to implement subtraction of two 32 bit numbers.

APPARATUS:

1. MC 8051 trainer kit
2. SMPS

THEORY:

Generally 8 bits are called a byte, 16 bits are called as word, 32 bits are called as
double word. Here we are subtracting two bytes, which are stored in the register. By using the
instruction SUBB we can subtract byte by byte.

ALGORITHM:

1. Start.

2. Get the first number.

3. Subtract with the second number.

4. Store result in Ro.

5. Repeat the above steps for given no. of inputs.

6. Output is displayed in Ry, R1, Rz, Rs.

7. Stop.

PROGRAM:

ADDR MNEMONICS OPERAND
6000 CLR C
6001 MOV A, Rg
6002 SUBB A, Ry
6003 MOV Ro, A
6004 MOV A R,
6005 SUBB A, Rs
6006 MOV Ry, A
6007 MOV A Ry
6008 SUBB A, Rg
6009 MOV R,, A
600A MOV A, R
600B SUBB A, Ry
600C MOV Rs, A
600D RET

EXPECTED RESULT:

Inputs: Rg =55h, R; =55h, R, = 55h, Rz = 55h
R4 =22h, Rs = 22h, Rg = 22h, R7 = 22h

Outputs: Ro = 33h, R; =33h, R, = 33h, R3 =33h

41

MicroProcessors & MicroControllers Lab
Exp. No. 6(B)(i)

ASSEMBLY LANGUAGE PROGRAM FOR MULTIPLICATION OF 32-BIT
NUMBERS

AIM: Write 8051 program to implement multiplication.

APPARATUS:
1. MC 8051 trainer kit
2. SMPS

THEORY:
After multiplication, if it is 16 bit multiplication the result will be stored in register
A and register B. If it is 8 bit multiplication then the result will be store in register A.

ALGORITHM:

1. Start.

2. Get the first number.

3. Store the number.

4. Get the second number.

5. Multiply A & B.

6. Increment data pointer.

7. Get the higher byte & lower byte of result.

8. Stop.

PROGRAM:
ADDR MNEMONICS OPERANDS
6000 MOV DPTR, #20A1
6003 MOVX A, @DPTR
6004 MOV Fo, A
6006 MOV DPTR, #20A0
6009 MOV X A, @DPTR
600A MUL AB
600B MOV DPTR, #20A2
600E MOVX @DPTR, A
600F INC DPTR
6010 MOV A Fo
6012 MOV X @DPTR, A
6013 RET

EXPECTED RESULT:

Inputs: 20A0 =05h & 20A1 =04h

Output: 20A2 = 14h

42

MicroProcessors & MicroControllers Lab
Exp. No. 6(B)(ii)

ASSEMBLY LANGUAGE PROGRAM FOR DIVISION OF TWO 8 BIT NUMBERS

AIM: Write 8051 program to implement division operation.

APPARATUS:
1. MC 8051 trainer kit
2. SMPS
THEORY:
After division the quotient is stored in register ‘A’ and the remainder will be stored in

register ‘B’.

ALGORITHM:

1. Start.

2. Get the first number.

3. Store the number.

4. Get the second number.

5. Divide A & B.

6. Increment data pointer.

7. Get the quotient, reminder & display.

8. Stop.

PROGRAM:
ADDR MNEMONICS OPERANDS
6000 MOV A, #00H
6003 MOV DPTR, #20A0
6004 MOV X A, @DPTR
6006 MOV Fo, A
6009 MOV A, #00H
600A INC DPTR
600B MOV X A, @DPTR
600C DIV A B
600D INC DPTR
600E MOVX @DPTR, A
6011 MOV A, Fo
6012 INC DPTR
6013 MOV X @DPTR, A
6014 RET

EXPECTED RESULT:

Inputs: 20A0 = 15h & 20A1=03h

Output: 20A2 =07h & 20A3 = 00h

43

MicroProcessors & MicroControllers Lab

Exp. No. 7(A)

ASSEMBLY LANGUAGE PROGRAM FOR EXCHANGE OF DATA

AIM: Write a program for exchange of data in 8051.

APPARATUS:
1. MC 8051 trainer kit
2. SMPS
ALGORITHM:
1. Start.
2. Get the first number in Accumulator
3. Get the second number in Rg
4. Swap A, and exchange with Ry.
5. Display the result.
6. Stop.
PROGRAM:
ADDR MNEMONICS OPERANDS
6000 MOV A, #C5H
6002 MOV Ro, #C6H
6004 SWAP A
6005 XCH A, Ro
6006 RET

EXPECTED RESULT:

‘A’ becomes 5Ch and moved to Ry = 5Ch

Ry = C6h is moved to A = C6h

44

MicroProcessors & MicroControllers Lab
Exp. No. 7(C)(i)

ASSEMBLY LANGUAGE PROGRAM FOR FINDING MAXIMUM NUMBER FROM
8-BIT TEN NUMBERS

AIM: Write a program for finding the maximum number from 8-bit ten numbers in 8051 Kit.

APPARATUS:
3. MC 8051 trainer kit
4. SMPS
PROGRAM:
6000 MOV DPTR, #7000 ; Initialize the pointer to memory where
numbers are stored
6003 MOV RO, #0A : initialize the counter
6005 MOV FO, #00 s maximum =0

6008 AGAIN: MOVX A, @DPTR ; get the number from the memory

6009 CJINE A, FO0, 02 ; NE = 600E — 600C=02, compare humber with
maximum

600C AJMP 6012 ; address of SKIP = 6012, if equal go to SKIP

600E JC 02 ; SKIP = 6012- 6010, if not equal check for
carry, if carry go to SKIP

6010 MOV F0,A ; otherwise maximum = number

6012 INC DPTR ; increment memory pointer

6013 DJNZRO,F3 ; AGAIN = FF — (6013-6007), decrement

count, if count = 0 stop, otherwise go to AGAIN
6015 RET

EXPECTED RESULT:

INPUT:

7000 08; 7003 05; 7006 04; 7009 00
7001 02; 7004 06; 7007 07,

7002 03; 7005 01; 7008 19;

OuTPUT

B=19h

45

MicroProcessors & MicroControllers Lab

Forward Jump:

For SKIP and NE label=

Address of location where to jump — address of location of next instruction after
jump instruction => 600E-600C=02

Backward Jump:

For AGAIN label=
No. of bytes= (address of location of the count)-(address of location where to jump)

Count=FF- No. of bytes=FF-(6013-6007)=F3

46

MicroProcessors & MicroControllers Lab
Exp. No. 7(C)(ii)

ASSEMBLY LANGUAGE PROGRAM FOR FINDING MINIMUM NUMBER FROM
8-BIT TEN NUMBERS

AIM: Write a program for finding the minimum number from 8-bit ten numbers in 8051 kit.

APPARATUS:
1. MC 8051 trainer kit
2. SMPS

PROGRAM:

6000 MOV DPTR, #7000 ; initialize the pointer to memory where
numbers are stored

6003 MOV RO, #0A : initialize the counter
6005 MOV FO, #FF : minimum =FF

6008 AGAIN: MOVX A, @DPTR ; get the number from the memory

6009 CJINE A, F0, 02 : NE = 600E — 600C=02, compare number with
minimum
600C AJMP 6012 ; address of SKIP = 6012, if equal go to SKIP
600E JNC 02 ; SKIP = 6012- 6010, if not equal check for
carry, if carry go to SKIP
6010 MOV F0,A ; otherwise minimum = number
6012 INC DPTR ; increment memory pointer
6013 DJNZRO,F3 ; AGAIN = FF — (6013-6007), decrement
count, if count = 0 stop, otherwise go to
AGAIN
6015 RET
RESULT:
INPUT:
7000 08; 7003 05; 7006 04; 7009 05
7001 02; 7004 06; 7007 07;
7002 03; 7005 01; 7008 19;
OUTPUT:

B=01h

47

MicroProcessors & MicroControllers Lab

Exp. No. 8

ASSEMBLY LANGUAGE PROGRAM FOR REVERSE AND LOGICAL ‘OR’

AIM: Write a program for reverse the numbers and apply logic instruction OR gate to the
given
numbers using 8051Kkit.

APPARATUS:
1. MC 8051 trainer kit
2. SMPS

PROGRAM:

MOV DPL, #34 ; instead of dpl, type 82
MOV DPH, #12 ; instead of dph, type 83
MOV A, DPL

RLA

RLA

RLA

RLA

MOV DPL, A

MOV A, DPH

RLA

RLA

RLA

RLA

MOV DPH, A

ORL A, DPL

RET

EXPECTED RESULT:

Logical ‘OR’ result for given numbers 43h & 21h is A = 63h
DPL=43h

DPH =21h

48

MicroProcessors & MicroControllers Lab

Exp. No. 9

ASSEMBLY LANGUAGE PROGRAM FOR “JUMP” & “CALL” INSTRUCTIONS

AIM: (a) Write a ALP to find the sum of values 79h, F5h and E2h using “JUMP’ instruction
and load the sum in Ry & R. (in 8051kit)
(b) Write a ALP to find the factorial of a given number using “CALL” & “RETURN”
instructions.

APPARATUS:
1. MC 8051 trainer kit
2. SMPS

PROGRAM (A): USING “JUMP” INSTRUCTION

ADDRESS | LABEL MNEUMONICS COMMNETS
6000 MOV A, #00 Clear Accumulator

6002 MOV R5,A Clear R5

6003 ADD A, #79 A=0+79 =79h

6005 JNC N1 If CY =0, add next number

6007 INC R5 Else increment R5

6008 N1: ADD A, #05 A =79+ F5h =6Ehand CY =1
600A JNC N2 If CY =0, add next number

600C INC R5 Cy =1, then increment R5

600D N2: ADD A, #0E2 A =6Eh+E2h=50hand CY =1
600F JNC If CY =0, copy result

6011 INC R5 If CY =1, increment R5

6012 OVER: | MOV RO, A Now, RO =50h & R6 = 02h

6013 HERE: | SIMP HERE Halt the program

RESULT:

RO=50h & R6 = 02h

PROGRAM (B): USING “CALL” & “RETURN” INSTRUCTION

ADDRESS | LABEL MNEUMONICS COMMNETS
8100 MOV A, #05 Copy 05h to Register A
8102 MOV RO, A Store 05h to Register RO
8103 CALL 9000 Call subprogram at 9000h
8106 HERE: | SIMP HERE End main program

9000 CIJNE RO, #01,9004 Compare and jump

9003 RET Return to main program
9004 DEC RO Decrement RO

9005 MOV FO, RO Move RO to register B
9007 MUL AB Repeat multiplication
9008 JC 9000

900B AGAIN: | SIMP AGAIN End subprogram
RESULT:

A =78h (factorial of a number 05)

49

MicroProcessors & MicroControllers Lab

USING (KEIL Software) for 8051

Demo: (A) Program to find addition of two numbers.
(B) Program of Multibyte Addition

Demo (A)

ASSEMBLY LANGUAGE PROGRAM FOR ADDITION OF TWO NUMBERS

AIM: Write an assembly language program for adding two 8-bit numbers using keil
Software (AT89C51).

APPARATUS:
1. Keil software
2. P.C.

PROGRAM:
MOV A, #05H
MOV B,#02H
ADD A,B
END
RESULT:

In accumulator, a= 7h

50

MicroProcessors & MicroControllers Lab

Demo (B):

ASSEMBLY LANGUAGE PROGRAM FOR MULTIBYTE ADDITION

AIM: Write an assembly language program for multibyte addition using keil software

(AT89C51).
APPARATUS:
1. Keil software
2. P.C.
PROGRAM:
MOV RO,#20H
MOV R1,#30H
MOV R3,#04H
CLRC
CLR A
AGAIN: MOV A,@RO
ADDC A,@R1
MOV @R1,A
INC RO
INC R1
DJNZ R3,AGAIN
END
RESULT:
Inputs:

i: 0x20 -- 01h, 02h, 03h, 04h
I: 0x30 -- 05h, 06h, 07h, 08h

Output:
i: 0x30 -- 06h, 08h, 0Ah, OCh

51

MicroProcessors & MicroControllers Lab

Exp. No. 10

ASSEMBLY LANGUAGE PROGRAM FOR ACTIVATING PORTS &
GENERATION OF SQUARE WAVE

AIM: Write an assembly language program for generating square waveform using keil
software (AT89C51).

APPARATUS:
1. Keil software
2. P.C.

PROGRAM(1):

MOV SP #7H

BACK: CLR P1.0
ACALL DELAY

SETB P1.0

ACALL DELAY

SIMP BACK
DELAY:MOV R1#0FFH
AGAIN:DIJNZ R1,AGAIN

RET
END
PROGRAM(2):
MOV SP #7H ; initialize stack pointer
; since we are using subroutine programe
BACK:MQV P1#00H ; send 00h on port 1 to generate
; low level of square wave
ACALL DELAY ; wait for some time
MOV P1,#0FFH ; send ffh on port 1 to generate
; high level of square wave
ACALL DELAY ; wait for some time
SIMP BACK ; repeat the sequence
DELAY:MOV R1#0FFH ; load count
AGAIN:DIJNZ R1,AGAIN ; decrement count and repeat the process
; until count is zero
RET ; return to main programe

52

MicroProcessors & MicroControllers Lab

EXPECTED RESULTS:

P1.7 P1.6 P1.5 P14 P1.3 P1.2 P1.1 P1.0

-~
-~

Program (1) : Activating Individual PORT1 pin 0

P17 P16 PL5 P14 P13 P1.2 PL1 P10

Program (2) : Activating PORT1

53

MicroProcessors & MicroControllers Lab

Exp. No. 11(A)(i)

ASSEMBLY LANGUAGE PROGRAM FOR ASCENDING ORDER OF A GIVEN
NUMBERS

AIM: Write an assembly language program for arranging in ascending/descending order
using keil software (AT89C51).

APPARATUS:
1. Keil software
2. P.C.

PROGRAM FOR ASCENDING ORDER:

MOV RO,#5 ; INITIALIZE COUNTER 1
AGAIN: MOV DPTR,#2000H ; initialize memory pointer
MOV R1,#4 : initialize counter 2
BACK: MOV R2,DPL ; save lower byte of memory address
MOVX A,@DPTR : Get the num ber
MOV B,A ; Save the number
INC DPTR ; Increment the memory pointer
MOVX A,@DPTR : Get the next number
CINE A,B,n ; If not equal check for greater or less
AJMP SKIP ; Otherwise go to skip
n: JNC SKIP If
MOV DPL,R2 ;Exchange
MOVX @DPTR,A
INC DPTR
MOV A,B
MOVX @dptr,A
SKIP: DINZ R1,BACK ;1f R1 not equal to 0 go to BACK
DJNZ RO,AGAIN ;1f RO not equal to 0 go to AGAIN
RESULT:
Inputs:

X: 0x2000 -- 05h, 02h, 01h, 04h

Output:
X: 0x2000 -- 01h, 02h, 04h, 05h

54

MicroProcessors & MicroControllers Lab

Exp. No. 11(A)(ii)

ASSEMBLY LANGUAGE PROGRAM FOR DESCENDING ORDER OF A GIVEN
NUMBERS

AIM: Write an assembly language program for arranging in ascending/descending order
using keil software (AT89C51).

APPARATUS:
1. Keil software

2. P.C.

PROGRAM FOR DESCENDING ORDER:

MOV RO, #5 ; INITIALIZE COUNTER 1
AGAIN: MOV DPTR,#2000H ; initialize memory pointer
MOV R1,#4 ; initialize counter 2
BACK: MOV R2,DPL ; save lower byte of memory address
MOVX A,@DPTR : Get the num ber
MOV B,A ; Save the number
INC DPTR ; Increment the memory pointer
MOVX A, @DPTR ; Get the next number
CINE A,B,n ; If not equal check for greater or less
AJMP SKIP ; Otherwise go to skip
n: JC SKIP If
MOV DPL,R2 ;Exchange
MOVX @DPTR,A
INC DPTR
MOV AB
MOVX @dptr,A
SKIP: DIJNZ R1,BACK ;1f R1 not equal to 0 go to BACK
DJNZ RO,AGAIN ;1If RO not equal to 0 go to AGAIN
RESULT:
Inputs:

X: 0x2000 -- 05h, 02h, 01h, 04h

Output:
X: 0x2000 -- 05h, 04h, 02h, 01h

55

MicroProcessors & MicroControllers Lab

Exp. No. 11(B)

ASSEMBLY LANGUAGE PROGRAM FOR DATA TRANSFER

AIM: Write an assembly language program for block move from one address to another
address using keil software (AT89C51).

APPARATUS:
1. Keil software
2. P.C.

PROGRAM:

MOV RO,#20H

MOV R1,#30H

MOV R3,#10H
CLRA
AGAIN:MOV A,@RO
MOV @R1,A

INC RO

INC R1

DJINZ R3,AGAIN
END

RESULT:

Inputs:
i: 0x20 -- 01h, 02h, 03h, 04h,05h,06h,07h,08h,09h,0Ah

Output:
i: 0x30 -- 01h, 02h, 03h, 04h,05h,06h,07h,08n,09h,0Ah

56

MicroProcessors & MicroControllers Lab

TABLE 4-1
Summary of 8085 Instruction Set

Instruction OP Code Bytes Cycles Operations Performed

ACI DATA CE 2 i (A] «[A) + second instruction
byte + (Cy)

ADC A 8F 1 4 (A] «[A] + (A] + [Cy)

ADCB 88 1 4 (A]«<(A] + (B] + [Cy]

ADCC 89 1 4 (A] «[A] + [C] + [Cy]

ADCD 8A 1 4 (A] «[A] + D] + [Cy]

ADCE 8B 1 4 (A] < [A] + (E] + [Cy]

ADCH 8C 1 4 [A] «[A] + (H] + (Cy)

ADC L 8D 1 4 (A] «[A] + L) + [Cy)

~ADCM 8E 1 7 |[Al«[A)+[H L] + [Cy]

ADD A 87 1 4 (A] «[A] +[A]

ADD B— 80 1 4 (A] «[A] + [B]

ADD C 81 1 |4 |(Al<[A]+[C)

ADDD 82 1 4 (A] «[A]+ (D]

ADDE 83 1 4 (A] « [A] + [E]

ADDH 84 1 4 (A] «[A] + [H]

ADD L 85 1 4 (A] «[A] + [L)

_ADDM 86 1 i (A] «[A] + ((H L))

ADI DATA C6 2 7 (A] «[A] + iecond instruction
yte

ANA A A7 1 4 (Al < [A]A[A]

ANA B A0 1 4 (A] < (A]A[B]

ANAC Al 1 4 (Al < [AIA(C)

ANAD A2 1 4 (A] < (A]JA(D]

ANAE A3 1 4 (A] < [A]A[E]

ANAH A4 1 4 (A] «[A]A[H]

ANAL A5 1 4 (Al < [AJA[L)

ANAM A6 1 4 (A] < (AJA((H L]}

ANI DATA E6 2 |1 (A] < [A]A :econd instruction
yie

CALL ppqq CD 3 18 |Call A subroutine addressed by

PP4q
CC ppaq DC 3 | 9718 |Call a subroutine addressed by
ppaqif Cy =1

b

All mnemonics copyright Intel Corporation 1976,

(continued)

57

MicroProcessors & MicroControllers Lab

TABLE 4-1
Summary of 8088 Instruction Set (cont.)

Instruction OP Code Bytes Cycles Operations Performed

CM ppqq] FC] 3 k 9/18 | Call a subroutine addressed by
paq if 8 = 1

CMA 2F 1 4 [A) « 1's complement of (A]

CMC F 1 4 [Cy] « 1's complement of (Cy|

CMP A BF 1 4 (A] - (A)

CMP B B8 1 4 (A] - (B)

CMP C B9 1 4 [A) - (C)

CMP D BA 1 4 (A) - [D)

CMP E BB 1 4 (Al - [E)

CMP H BC 1 4 (A] - [H]

CMP L BD 1 4 (A) - (L]

CMP M BE 1 7 (A] - ((H L]

CNC ppqq D4 3 9/18 | Call a subroutine addressed by
prqq ifCy =0

CNZ ppqq Cd 3 9/18 | Call a subroutine addressed by
prqq ifZ =0

CP ppqq F4 3 9/18 | Call a subroutine addressed by
ppqq if S = 0

CPE ppqq EC 3 9/18 c-lﬁ subroutine addressed by
ppqq if P = 1

CPI1 DATA FE 2 7 [A] - second instruction byte

CPO ppqq E4 3 9/18 | Call a subroutine addressed by
ppqq if P =0

U4 ppqq uu 3 w18 Call a subroutine addressed by
pPqq ifZ = 1

DAA 27 1 4 Decimal adjust accumulator

DAD B 09 1 10 (HL) « (HL) + (BC)

DAD D 19 1 10 (HL) « (HL) + (DE)

DAD H 29 1 10 (HL) « (HL] + [HL)

DAD SP 39 1 10 (HL) « (HL) + (SP]

DCR A sD 1 4 (A)—(A] -1

DCR B 05 1 4 (B]—[B] -1

DCR C 0D 1 4 [Cl—(C)-1

DCR D 156 1 4 (D] (D] -1

DCR E 1D 1 4 [E) —(E] -1

DCR H 26 1 4 [H) —(H] -1

DCR L 2D 1 4 [Ll—([L]-1

DCR M 386 1 4 ((HL]) « ((HL)) - 1

DCX B 0B 1 6 [(BC]«—([BC] -1

DCX D 1B 1 6 (DE] « [DE] - 1

DCX H 2B 1 6 [HL) « [HL) - 1

DCX SP SB 1 6 (SP] «[SP] - 1

DI F3 1 4 Disable interrupts

EI FB 1 4 Enable interrupts

HLT 76 1 6 Halt

IN PORT DB 2 10 [A] « [specified port]

INR A sC 1 4 [A)—[A] + 1

INR B 04 1 4 (Bl—(B]+1

INRC 0oC 1 4 [Cl—I(C]+1

INRD 14 1 4 (D] (D] +1

INRE 1C 1 4 [E]—(E] +1

INRH 24 1 4 [Hl—[H]+1

INRL 2C 1 4 (L) (L] + 1

INR M 34 1 4 ((HL)) « [(HL]] + 1

INX B 03 1 6 (BC] — (BC] + 1

INX D 13 1 6 (DE) « [DE] + 1

INX H- +4--23 1 6 |HL) — (HL) + 1

INX SP 33 1 6 (SP] « (SP] + 1

JC ppqq DA 3 710 Jump to ppqq if Cy = 1

JM ppqq FA 3 7710 Jump to ppaq if S =1

JMP ppqq cs 3 10 Jump to ppaq

JNC ppqq D2 3 7/10 |[Jump to ppqq if Cy = 0

JNZ ppqq C2 3 7/10 |Jump to ppeq if Z =0

JP ppqq F2 3 7/10 |Jump to ppqq if S = 0

JPE ppqq EA 3 710 [Jump to ppeq if P =1

JPO ppqq E2 3 710 [Jump to ppqq if P = 0

JZ ppqq CA b 7/10 |Jump to ppeq if Z = 1 .

All mnemonics copyright Intel Corporation 1976.

58

_ MicroProcessors & MicroControllers Lab
TABLE 4-1
summary of 8085 Instruction Set (cont.)
Instruction OP Code Bytes Cycles Operations Performed

LDA ppad 3A 3 13 [A) < [ppqq)

LDAX B 0A 1 7 [A] « ((BC]]

LDAX D 1A 1 7 [A] « [(DE])

LHLD ppqq 2A 3 16 (L) « [ppqq), [(H] « [ppqq + 1]

LXI B 01 3 10 [BC] « second and third
instruction bytes

LXID 11 3 10 [DE] « second and third
instruction bytes

LXI H 21 3 10 [HL] « second and third
instruction bytes

LXI SP 31 3 10 [SP] « second and third
instruction bytes

MOV AA 7F 1 4 [A] « [A)

MUV A,B 78 1 4 lA] < [B]

MOV AC - 79 1 4 [A] « [C]

MOV AD TA 1 4 [A] « [D]

MOV A,E 7B 1 4 [A] < [E]

MOV AH 7C 1 4 [A] « [H]

MOV AL 7D 1 4 [A] « [L]

MOV AM 7E 1 7 [A] « [[HL]]

MOV B,A 47 1 - 4 [B] « [A]

MOV B,B 40 1 4 [B] « [B]

MOV B,C 41 1 4 [B] « [C]

MOV B,D 42 1 4 [B] « [D]

MOV B,E 43 1 4 [B] « [E]

MOV B,H 44 1 4 [B] « [H]

MOV B,L 45 1 4 [B] < [L]

MOV B.M 46 1 7 (B] « [[HLI]]

MOV C,A 4F 1 4 [C] « [A]

MOV C,B 48 1 4 [C] « [B]

MOV C,C 49 1 4 [C] < [C]

MOV C,D 4A 1 4 [C] « [D]

MOV C,E 4B 1 4 (C] < [E]

MOV C,H 4C 1 4 [C] « [H]

MOV C,L 4D 1 4 [C] « [L]

MOV C,M 4E 1 7 [C] < [[HL]]

MOV DA 57 1 4 [D] « [A]

MOV D,B 50 1 4 (D] « [B]

MOV D,C 51 1 4 [D] « [C]

MOV D,D 52 1 4 (D] « [D]

MOV D,E 53 1 4 [D] « [E]

MOV D H 54 1 4 (D] « [H]

MOV D,L 55 1 4 [D] « [L]

MOV DM 56 1 7 [D] « [[HL]]

MOV E,A 5F 1 4 (E] < [A]

MOV E,B 58 1 5 [E] « [B]

MOV E,C 59 1 4 [E) « [C]

MOV E,D 5A 1 4 [E] « [D]

MOV E,E 5B 1 4 [E] « [E]

MOV EH 5C 1 4 (E] « (H]

MOV E,L 5D 1 4 (E] « (L]

MOV EM 5E 1 7 [E] « [[HL]]

MOV H,A 67 1 4 (H] « [(A]

MOV H,B 60 1 4 (H) « [B]

MOV H,C 61 1 4 (H] < [C]

MOV H,D 62 1 4 (H] « (D]

MOV H,E 63 1 4 (H] « [E]

MOV HH 64 1 4 (H) « (H]

MOV H,L 66 1 4 (H) « (L]

MOV HM 66 1 7 (H] « [(HL]]

MOV LA 6F 1 4 (L) < [A)

MOV L,B 68 1 4 (L] « [B]

MOV L,C 69 1 4 (L] < [C]

MOV L,D 6A 1 4 (L] « [D]

MOV LE 6B 1 4 (L] « (E]

All mnemonics copyright Intel Corporation 1976.

(continued)
59

MicroProcessors & MicroControllers Lab

TABLE 4-1
Summary of 8085 Instruction Set (cont.)
Instruction OP Code Bytes Cycles Operations Performed
6C 1 4 (L] « [H]
MOVl 6D 1 |4 |@lemw
MOV LM 6E 1 7 (L] « [[HL]]
MOV M,A 77 1 |7 ((HL)] « (A]
MOV M,B 70 1 7 ((HL]] « [B]
MOV M,C 71 1 7 [[HL]] « [C]
MOV M,D 72 1 7 ((HL]] « [D]
MOV ME. 73 1 7 ([HL]] « [E]
MOV M,H 74 1 7 ((HL]] « [H]
MOV M.L 76 1 7 ((HL]] « [L]
MVI A, DATA 3E 2 7 [A] « second instruction byte
MVI B, DATA 06 2 7 [B] « second instruction byte
MVI C, DATA OE. 2 7 [C] « second instruction byte
MVI D, DATA 16 2 7 [D] « second instruction byte
MVI E, DATA 1E 2 § (E] « second instruction byte
MVI H, DATA 26 2 7 (H] « second instruction byte
MVI L, DATA 2E 2 7 [L] « second instruction byte
MVIM, DATA 36 2 10 [[HL]] « second instruction byte
NOP 00 1 4 No operation
ORA A B7 1 4 [A] « [A] v [A]
ORA B BO 1 4 [A] < [A]\/ [B]
ORA C B1 1 4 [A]l < [A]\/[C]
ORA D B2 1 4 [A] «— [A] v [D]
ORA E B3 1 4 [A]l < [A] v [E]
ORA H B4 1 4 [A] « [A]\/ [H]
ORA L B5 1 4 [A] «—[A] /(L]
ORA M B6 1 7 [A] < [A] v [[HL]]
ORI DATA Fé 2 7 [A] < [A] \/ second instruction
byte
OUT PORT D3 2 10 [specified port] « [A]
PCHL E9 1 6 [PCH)* « [H], [PCL)" « [L]
POP B C1 1 10 [C] < [[SP]}, [SP] « [SP] + 2
[B] < [[SP] + 1]
POP D D1 1 10 {g]] - %[Ssg]]. [SP] « [SP] + 2
«[[SP] + 1]
POP H El 1 10 [[%I]] - [[[[ssl;]] [SP] « [SP] + 2
«— 1+ 1]
POP PSW F1 1 10 [A] « [[SP] + 1], [PSW] « [[SP]],
Rl
— 1] «[B], [SP] « [SP] - 2
PUSH B C5 1 12 E[gg]} - 2] «[C] -
PUSH H E5 1 12 E{gl;} - 1% <« [H], [SP) « [SP] — 2
— 2]« [L]
PUSH PSW F5 1 12 |[(SP] - 1)« [A), [SP] « [SP] - 2
([SP] - 2] « [PSW]
RAL
3 14 AT O-oF
RAR
iE V14 AL rol
RC D8 1 | 612 |Return if carry
. [PC] « ([SP]]
RET C9 1 10 g;g}i]] « [[SP]), [SP] « [SP) + 2
* «—[[SP] + 1]
RIM 20 R Read interrupt mask.
RIIC 0 .
o ’ Pt AT A
F8 1 6/12 |Return if minus. [PC] « [(SP]]

All mnemonics
“ PCL-Program C

copyright Intel Corporation 1976.
ounter Low byte; PCH-Program Counter High byte.

01V

MicroProcessors & MicroControllers Lab

TABLE 4-1
summary of 8085 Instruction Set (cont.)

Instruction OP Code Bytes Cycles Operations Performed

RNC DO 1 6/12 |Return if no carry. [PC] « [[SPF
RNZ Co 1 6/12 |Return if result not zero.
(PC] « [ISP])
RP FO 1 6/12 | Return if positive.
(PC] « ([SP]], [SP] « [SP] + 2
RPE E8 1 6/12 | Return if parity even.
[PC] « [(SP]], [SP) « [SP] + 2
RPO EO 1 6/12 Return if parity odd.
(PC] « [(SP]], [SP] « [SP] + 2
RRC oF | 1 |4 (ACCOTILILIrE
RSTO C7 1 12 Restart
RST1 CF 1 12 Restart
RST2 D7 1 12 Restart
RST3 DF 1 12 Restart
RST4 E7 1 12 Restart
RST5 EF 1 12 Restart
RST6 F7 1 12 Restart
RST7 FF 1 12 Restart
RZ Cc8 1 6/12 | Return if zero. [PC] « [[SP]]
SBB A 9F 1 4 [A] < [A] — [A) — [Cy]
SBB B 98 1 4 [A] < [A] - [B] - [Cy]
SBB C 99 1 4 [A] < [A] - [C] - [Cy]
SBB D 9A 1 4 [A] « [A] - [D] - [Cy]
SBB E 9B 1 4 [A] < [A] - [E] - [Cy]
SBB H 9C 1 4 [A] « [A] - (H] - [Cy]
SBB L 9D 1 4 (A] < [A] - [L] - [Cy]
SBB M 9E 1 7 [A) < [A] - [(HL]] — [Cy]
SBI DATA DE 2 7 [A] « [A] — second instruction
byte — [Cy]
SHLD ppqq 22 3 16 (ppqq) <« L), [ppaq + 1] < [H)
SIM 30 1 4 Set interrupt mask
SPHL F9 1 6 [SP] « [HL]
STA ppaq 32 3 13 [ppaq) < [A]
STAX B 02 1. 7~ ((BCTl « [A]
STAX D 12 1 7 [[DE]] « [A]
STC 37 1 4 | [Cyl <1
SUB A 97 1 4 [A] < [A] — [A]
SUB B 90 1 4 [A] < [A] — [B]
SUBC 91 1 4 [A] < [A) - [C]
SUB D 92 1 4 [A] « [A] - [D]
SUBE 93 1 4 [A] < [A] - [E]
SUBH 94 1 4 [A] < [A] - [H]
SUBL 95 1 4 [A] «[A] - [L]
SUB M 96 1 7 [A] « [A] — [[HL]]
SUI DATA Dé 2 7 [A] « [A] — second instruction
byte
XCHG EB 1 4 [D] « (H], (E] « (L]
XRA A AF 1 4 [A] « [A)a+[A)
XRA B A8 1 4 [A) « [A)a(B)
XRA C A9 1 4 [A) — [A)x+(C]
XRA D AA 1 4 (A] «— (A)3#(D]
XRA E AB 1 4 [A) « [A)x+(E]
XRA H AC 1 4 (A) « [A)3+(H])
XRA L AD 1 4 (A) « [A)a+ (L)
XRA M AE 1 7 [A) « [A)A# ([HL])
XRI DATA EE 2 7 (A) « lA]v;econd instruction
yte
XTHL E3 1 16 ((SP)) « (L}, ((SP] + 1) « [H)

“PCL — program counter low byte; PCH — program counter high byte.
 or @ may be used to represent Exclusive-OR operation.
All mnemonics copyright Intel Corporation 1976.

61

TABLE 4-2 Soquence
.Code
gt s PO BT
0P ‘ oenonie Code Mnemani
L i
p Ok H pA 8 ADD D AD
NOP n o MOV ,
w om0 R L B ADD E AR
o L OB KB w MOV £B
"R 0 e WMoY gC M ADD H AP
p W WL MoY ED 8 ADD L B0
0 N 6A
wonopo o o MOV EE % ADD M Bl
g oon b0 B wov BH W AD A B
® Wi Bt ;ﬂ W 6 Mov BL 8 AN B B
m R w6 MOV EM A B
- I EA 6A ADC D BS
o DA B M xR N 0 MOV HB 8 ADC E B
o Loax B W NpE 61 MOV HC 6 A H B
mooor B ol T g Mov HD 6D ADC LB
x M ¥ g MOV HE 66 ADC M B9
o B % 33 0 8 B MOV HH 6P ADC A BA
L 6 MOV H
:? TRLLL gg N A6 MOV E;\ g ggg g gg
) DR A 68 MOV
" ﬁ;x B gg Wi ADS @ MOV LC M SUB H B
': :mz D OH B MOV LD % SUB L (o
:s Xp D MOV B 6B MOV LE % SUB M Cl
% MV DD§ 4 Mov BC 6C MOV LH 9 SUB A (2
EEEE TS TR Ay
- g MOV BE GE .
:: DD D 4 MOV BH GF MOV LA SA 8BB D (5
W OLAX D 4 MOV BL 0 MOV MB 9B SBB B (6
B DK D 4 MOV BM T MOV MC & SBB H (7
C DR E @ MOV BA T MOV MD D BB L (8
D DR E 4 MOV CH ™M MOV ME O SBB M (9
B M EDS & MOV CC M MOV MH SF SBB A CA
P RAR i MOV CD T MOV ML A0 ANA B CB
» RN B MOV CE 6 HLT AL ANA CCC
I X HDIE 4 MOV CH 7 MOV MA A2 ANA D D
2 SHD Ak D MOV CL T8 MOV AB A3 ANA E CE
N H & MOV CH 1 MOV AC M ANA H (P
g % : F MOV CA A MOV AD A5 ANA L DO
9 MOV DB B MOV AE A6 ANA M DI
X MVI HDS 51 MOV DC 1C MOV AH AT ANA A D2
7 DM 2MOV DD D MOV AL A8 XRA B D3
3 - O MOV DE TE MOV AM A9 XRA C I
H‘foi‘d,“"”“ T MOV AA AL XRA D D5
% MOV DL 8% ADD B AB XRA E D§

MicroProcessors & MicroControllers Lab

Ry
XA |,
Ay
KAy
ORA
0 ¢
M p
O g
O §
O |,
ORA i
ORA
CMP
MP ¢
CMP
(MP
CMP
CMP |,
(MP M
CMP A
RNZ
POP B
MP Adr
CNZ Adr
PUSH B
ADl D8
RST 0
R
RET Adr
I Adr
C A
CALL Adr
ACl D8
RST 1
RNC
PP D
INC Adr
ouT D8
CNC Adr
PUSH D
sur D8

Code Mnemonic Code Mm"wm'c ngg

0
0§
0§
DA
Db

0
0D
DE
OF
&
Bl
£
X
7]
£
[}
1
£
B9
EA
£B
£C
)]
EE
1
]
Fl
f
R
1
P
]
f
8
3]
FA
B
FC
fD
FE
fF

£

SE=EZS3533358 ' s=5 1 #7275

TE sz

62

