
MICRO PROCESSORS & MICROCONTROLLERS
LAB (EE 432)

LABORATORY MANUAL

IV/IV B.E I SEM EEE/EIE

DEPARTMENT OF ELECTRICAL ENGINEERING

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY
Banjara Hills Road No 3, Hyderabad 34

www.mjcollege.ac.in

2014-15

Prepared By: G. RAVI KIRAN, Asst.Professor

www.mjcollege.ac.in

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

MICROPROCESSORS & MICROCONTROLLERS LAB
(EEE & EIE)

LIST OF EXPERIMENTS

Using MASM

Demo: (A) Addition of two 8 Bit/ 16 Bit Numbers.
(B) Subtraction of two 8 Bit/ 16 Bit Numbers.

1. (a) Programs for Signed/Unsigned Multiplication.
(b) Program for Unsigned Division.

2. Program to find Average of 8 Bit/ 16-Bit Numbers in an Array.

3. (a) Program for finding the largest number in an Array.

(b) Program for finding the smallest number in an Array.

4. (a)Programs for code conversion like BCD numbers to seven segment.

(b) Program for searching a number in an array.

5. (a) Programs for computing factorial of a positive integer number.

(b) Program to find number of one’s in a given 8- bit number.

USING 8086 KIT

6. 8255 – PPI: ALP to generate Triangular wave using DAC

(a) Program to generate Sawtooth wave form.
(b) Program to generate Triangular wave form.
(c) Program to generate Square wave form.

USING 8051 KIT

7. Arithmetic Instructions: Multibyte Operations
(a) Program for addition/subtraction of two 16 bit numbers.
(b) Program for multiplication/division of two 16 bit/32 bit numbers.

8. Data Transfer – block move, exchange, sorting, finding largest number in an
array.
(a) Program for finding maximum/minimum number in an array.
(b) Program for exchange of data.

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

9. Boolean & Logical Instructions (Bit Manipulations)
Program for reverse & logical ‘OR’ of a given number.

10. Traffic Light Controller.

USING ‘C’ Cross Compiler (KEIL Software)

11. Program for activating ports and generation of square wave.

12. (a) Program to find addition of two numbers.
(b) Program of Multibyte Addition

13. (a) Program for ascending order/descending order of a given numbers
(b) Program for data transfer.

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

INTRODUCTION TO MASM

The Microsoft macro assembler is an x86 high level assembler for DOS and Microsoft

windows. It supports wide varieties of macro facilities and structured programming

idioms including high level functions for looping and procedures

A program called assembler used to convert the mnemonics of instructions along with

the data into the equivalent object code modules, these object code may further

converted into executable code using linked and loader programs. This type of program

is called as ASSEMBLY LANGUAGE PROGRAMMING. The assembler converts and

Assembly language source file to machine code the binary equivalent of the assembly

language program. In this respect, the assembler reads an ASCII source file from the

disk and program as output. The major different between compilers for a high level

language like PASCAL and an Assembler is that the compiler usually emits several

machine instructions for each PASCAL statement. The assembler generally emits a

single machine instruction for each assembler language statement.

Attempting to write a program in machine language is not particularly bright. This

process is very tedious, mistakes, and offers almost no advantages over programming in

assembly language. The major disadvantages over programming in assembly language

over pure machine code are that you must first assemble and link a program before you

can execute it. However attempting to assemble the code by hand would take for longer

than the small amount of time that the assembler takes the perform conversion for you.

An assembler like Microsoft Macro Assembler (MASM) provides a large number of

features for assembly language programmers. Although learning about these features

take a fair amount of time. They are so useful that it is well worth the effort.

Microsoft MASM version 6.11 contains updated software capable of processing
printing instructions. Machine codes and instruction cycle counts are generated by
MASM for all instructions on each processor beginning with 8086. To assemble the
file PROG.ASM use this command: (better to use DOS command line)

MASM PROG.ASM
The MASM program will assemble the PROG.ASM file. (To create PROG.OBJ
from PROG.ASM)

To create PROG.EXE from PROG.OBJ, use this LINK command:
LINK PROG.OBJ

It converts the contents of PROG.OBJ into PROG.EXE.

To link more than one object file use + signs between their file names as in:

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

LINK PROGA+PROGB+PROGC

The following is a list of MASM reserved words:

ASSUME assume definition
CODE begin code segment
DATA begin data segment DB define byte
DD define double word
DQ define quad word
DS define storage
DUP duplicate
DW define word
ELSE else statement
END end program
ENDM end macro
ENDIF end if statement
ENDP end procedure
ENDS end segment
EQU equate
IF if statement
FAR far reference
MACRO define macro
.MODEL model type
NEAR near reference
OFFSET offset
ORQ origin
PARA paragraph
PROC define procedure
.EXIT generate exit code
PUBLIC public reference
SEG locate segment
SEGMENT define segment
PTR pointer

USING DEBUG TO EXECUTE THE 80x86 PROGRAM:

DEBUG is a utility program that allows a user to load an 80x 86 programs into

memory and execute it step by step. DEBUG displays the contents of all processor

registers after each instruction execute, allowing the user to determine if the code is

performing the desired task. DEBUG only displays the 16-bit portion of the general

purpose registers. Code view is capable of displaying the entire 32 bits. DEBUG is a

very useful debugging tool. We will use DEBUG to step through a number of simple

programs, gaining familiarity with Debug’s commands as we do so. DEBUG

contains commands that can display and modify memory, assemble instructions,

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

disassemble code already placed into memory, trace single or multiple instructions,

load registers with data and do much more.

DEBUG loads into memory like any other program, in the first available slot.

The memory space used by DEBUG for the user program begins after the end of

Debug’s code. If an .EXE or .COM file were specified, DEBUG would load the

program according to accepted DOS conventions.

To execute the program file PROG.EXE use this command

DEBUG PROG.EXE

DEBUG uses a minus sign as its command prompt, so should see a “-“ appear on

display.

To get a list of some commands available with DEBUG is :

T trace (step by step execution)
U un assemble
D dump
G go (complete execution)
H Hex

To execute the program file PROG.ASM use the following procedure:

.MASM PROG.ASM

.LINK PROG.OBJ

.DEBUG PROG.EXE

ASSEMBLER DIRECTIVES: The limits are given to the assembler using some pre
defined alphabetical strings called Assembler Directives which help assembler to
correctly understand. The assembly language programs to prepare the codes.
DB GROUP EXTRN
DW LABEL TYPE
DQ LENGTH EVEN
DT LOCAL SEGMENT
ASSUME NAME
END OFFSET
ENDP ORG
ENDS PROC
EQU PTR

DB-Define Byte: The DB drive is used to reserve byte of memory locations in the available
on memory.

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

DW-Define Word: The DW drive is used to reserve 16 byte of memory location available
on memory.

DQ-Define Quad Word (4 words): The DB directives is used to reserve 8 bytes of memory
locations in the memory available.

DT-Define Ten Byte: The DT directive is used to reserve 10 byte of memory locations in
the available memory.

ASSUME: Assume local segment name the Assume directive is used to inform the
assembler. The name of the logical segments to be assumed for different segment used in
programs.

END: End of the program the END directive marks the end of an ALP.

ENDP: End of the procedure.
ENDS: End of the segment.
EQU: The directive is used to assign a label with a variable or symbol. The directive is just

to reduce recurrence of the numerical values or constants in the program.

OFFSET: Specifies offset address.
SEGMENT: The segment directive marks the starting of the logical segment.

EXECUTION OF ASSEMBLY LANGUAGE PROGRAMMING IN MASM SOFTWARE:
Assembly language programming has 4 steps.

1. Entering Program
2. Compile Program
3. Linking a Program
4. Debugging a Program

PROCEDURE:
1. Entering Program:-

Start Menu
Run
Cmd

C:\cd MASM
C:\ MASM> edit filename.asm

After entering program save & exit (ALT F & Press S or ALT F &Press X)
C:\MASM>
2. Compile the Program:-
C:\MASM> MASM filename.asm

C:\MASM\filename.asm

This is editor
Enter program here

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Microsoft @macro assembler version 5.10
Copy rights reserved© Microsoft
Corp 1981 All rights reserved
Object filename [OBJ];
List filename [NUL, LIST];
Cross Reference [NUL, CRF];
Press enter the screen shows c>

3. Linking a Program:-

c> link filename.obj
Microsoft @ overlay linker version 3.64

Copy rights reserved© Microsoft corp.
1983-88. All rights reserved
Object module [.OBJ];
Run file [.EXE];
List [NUL MAP];
Libraries [LIB];
Press enter till screen chows c>

4. Debug a Program:-
C> debug filename.exe

- (Screen shows only dash)
- t

‘t’ for trace the program execution by single stepping starting from the address
SEG.OFFSET. ‘q’ for Quit from Debug & return to DOS.

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

OPERATION OF 8051 KIT

 Switch on power supply. Message”ANSHUMAN” will be displayed.

 Press”E” &then “ENTER” key.

 Select C=A & then press enter .default 6000 address will be displayed.
o Note: for changing address select C=A address.

 Now enter the program. At the end press “ENTER” key twice.

 Then C= will be displayed. Press “Q”.

 Press “S” & press enter.

 By pressing any key, select, EXT. memory, register. etc. &press “enter” key.

 For register, select general (AS, DPL, DPR etc),BANK etc. press enter.

 Now enter the inputs &press enter key

 Press “G” press “enter” key.

 BURST will be displayed. Press enter.

 ADDR will be displayed. Esc 6000&press enter.

 Wait, DONE message will be displayed.

 Now to view output, press “S”& press “ENTER”.

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

OPERATION OF 8086 KIT

PROCEDURE RO OPERATE ANSHUMAN KIT 8086:

1. ENTERING THE PROGRAM AND DATA:
 Switch on the power supply. “Anshuman” is displayed
 Press ‘E’ & then ENETER
 Lity will be displayed (for Utility commands) selecting A

(Assembler) & D (Dissembler) press enter key. Entering
mnemonics into kit, Press ‘A’ followed by starting address
Enter simply Press “A” Default address 0100 will be selected.

 Now enter the mnemonics of 8086 into kit type “INT A5” or
“RET” for terminating the program. & Enter twice:

 Press “Q” and then enter.
 Press “S” & then enter
 Memory will be displayed & press “enter key”
 SRC-SEGM will be displayed.
 Here type the address 0000, & Press enter
 ADDR will be displayed

Type the starting address, where data will be entered (0100) &
Press enter key & enter the data. After entering data press
ESC.

2. EXECUTE THE PROGRAM:
 Press ‘G’ & enter.
 BURST will be displayed then press enter key
 SCR-SEGM will appear enter the default address 1000 & press

enter key.
 ADDR will appear enter the starting segment say 0100 & press

enter key.
 Message “Wait” command will appear.

3. TO CHECK THE RESULT:
 Press ‘S’ & then press enter key.
 Memory will be displayed & then press enter key.
 SCR-SEGM will appear, here enter 0000 & press enter.
 ADDR will appear. Now type the address of the output

location/port to see the result.
 Next .

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

PROCEDURE FOR TRAFFIC LIGHT CONTROLLER

To run the program for 8051 kit through EEPROM for traffic light
control

 Connect 8051 kit to CPU through RS232 cable.

 Connect the Traffic Light Controller kit to 8051 kit through 24-pin FRC cable.

 In computer, Go to Programs, click on Accessories and select Communications

and click on Hyper terminal, then a new window will be open.

 Give any name like “mjcet”, then another new window will be opened , click

“OK”.

 In the COM1 properties window, select stop bits as 2 and click “OK”

 press reset in kit

 make Caps lock on from pc key board Press I> Enter

 PRTY > TYPE N

 NO PRTY> ENTER

 HEX>ENTER

 STRT 75B0

 END

 77FF

 WAIT

 TRANSFER >SELECT TEXT FILE AND SHOW .HEX FILE ADDRESS

(folder XPO51>XPO31ACC>TRAF2K3C.HEX)

 Eg Traf2 k3c.HEX

 DISPLAY COMMAND=

 Enter G ,Add will be displayed then type 75b0 (Starting address of program)

 wait will be displayed check results on the traffic kit

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

PROCEDURE FOR PROGRAMS ON KEIL SOFTWARE

 Click on Keil uvision3.

 Click on ‘Project’, create a new project and save it in a new folder choose target

option for Atmel and AT89C51.

 Go to File, click on new file, and type the program.

 Go to File, click on ‘save as’, save the program with extension .asm on your

particular folder where you saved your project.

 Add your program to Source Group 1 which is at Target1 (Project workspace)

which is created after selecting the target in step 2.

• To do this right clicks on Source Group 1 and select ‘Add files to Source

Group 1’.

• Search your code with .asm extension.

 Now Click on Translate current file tab present file toolbar and check for

errors. If error present then rectify.

 Click on Rebuild all target files to add our program to the AT89C51 target.

 Go to Debug, click on Start/Stop debug session.

 For giving input data: Go to view, click on Memory window.

• Enter inputs for corresponding memory addresses.

 For internal memory type: i:0x20 for example

 For external memory type: x:0x2000 for example

 Now click on “Run”, check the results.

 While in Debug don’t make any changes in the program.

 After running again click Start/Stop debug session to edit mode for changes in

program.

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Demo Program (A):

ADDITION OF TWO 16 BIT NUMBERS

AIM: To implement assembly language program for addition of two 16-bit numbers.

APPARTUS: MASM Software, P.C.

PROGRAM:

DATA SEGMENT

N1 DW 1234H

N2 DW 2134H

RES DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX, DATA

MOV DS, AX

MOV AX, N1

MOV BX, N2

ADD AX, BX

MOV RES, AX

INT 21H

CODE ENDS

END START

RESULT:

AX = 3368h

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Demo Program (B):

SUBTRATION OF TWO 16 BIT NUMBERS

AIM: To implement assembly language program for subtraction of two 16-bit numbers.

APPARTUS: MASM Software, P.C.

PROGRAM:

DATA SEGMENT

N1 DW 4444H

N2 DW 2121H

RES DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE, DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV AX,N1

MOV BX,N2

SUB AX,BX

MOV RES,AX

INT 21H

CODE ENDS

END START

RESULT:

AX = 2323h

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp.No.01 (a)

ASSEMBLY LANGUAGE PROGRAM TO MULTIPLY TWO 16-BIT
SIGNED/UNSIGNED NUMBERS

AIM: To implement assembly language program to multiply two 16-bit signed numbers.

APPARTUS: MASM Software and PC

ALGORITHM:

1. Start.
2. Initialize the data segment
3. Load the first number in AX Register.
4. Load the second number in BX Register.
5. Perform the multiplication of the two 16-bit numbers.
6. Store the result in AX Register.
7. Stop.

PROGRAM:

DATA SEGMENT

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START:

INT 21H

CODE ENDS

END START

RESULT:

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

AIM: To implement assembly language program to multiply two 16-bit unsigned numbers.

APPARTUS: MASM Software and PC

ALGORITHM:

1. Start.
2. Initialize the data segment
3. Load the first number in AX Register.
4. Load the second number in BX Register.
5. Perform the multiplication of the two 16-bit numbers.
6. Store the result in AX Register.
7. Stop.

PROGRAM:

DATA SEGMENT

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START:

CODE ENDS

END START

RESULT:

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp.No. 01(b)

ASSEMBLY LANGUAGE PROGRAM FOR UNSIGNED DIVISION OF TWO
NUMBERS

AIM: To implement assembly language program to divide 32-bit with 16-bit numbers.

APPARTUS: MASM Software, P.C.

ALGORITHM:

1. Start.
2. Initialize the data segment.
3. Load the higher 32-bit number to be divided in AX.
4. Load the 16-bit number in DX register.
5. Take the division in BX register.
6. Perform the unsigned division.
7. Store the result in AX register.
8. End.

PROGRAM:

DATA SEGMENT

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START:

CODE ENDS

END START

RESULT:

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Demo:

ASSEMBLY LANGUAGE PROGRAM TO FIND SUM OF NUMBERS IN AN ARRAY

AIM: To implement ALP to find sum of numbers in the array.

APPARTUS:
MASM Software, P.C.

ALGORITHM:
1. Start.
2. Initialize counter = 10.
3. Initialize array pointer.
4. Sum = 0.
5. Get the array element pointed by array pointer.
6. Add array element in the Sum.
7. Increment array pointer decrement counter.
8. Repeat steps 4, 5 & 6 until counter = 0.
9. Display Sum.
10. Stop.

PROGRAM:

DATA SEGMENT
ARRAY DB 12H, 24H, 26H, 63H, 25H, 86H, 2FH, 33H, 10H, 35H
SUM DW 0

DATA ENDS
CODE SEGMENT
ASSUME CS: CODE, DS: DATA

START: MOV AX, DATA
MOV DS, AX
MOV CL, 10
XOR DI, DI
LEA BX, ARRAY

BACK: MOV AL, [BX+DI]
MOV AH, 00H
MOV SUM, AX
INC DI
DEC CL
JNZ BACK
INT 21

CODE ENDS
END START

RESULT:

AX = 0211h

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp.No. 02

ASSEMBLY LANGUAGE PROGRAM TO FIND AVERAGE OF 8-BIT NUMBERS IN
AN ARRAY

AIM: To implement ALP to find average of 8-bit numbers in array.

APPARTUS:
MASM Software, P.C.

ALGORITHM:

1. Start.
2. Initialize the data segment.
3. Initialize counter = 0.
4. Initialize pointer.
5. Initialize array base pointer.
6. Get the number.
7. Add sum to the number i.e. add array element.
8. Increment array pointer decrement counter.
9. Repeat steps 6, 7 & 8 under counter = 0.
10. Display average.
11. Stop.

PROGRAM:

DATA SEGMENT

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS; DATA

START:

INT 03H

CODE ENDS

END START

RESULT:

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

ASSEMBLY LANGUAGE PROGRAM TO FIND AVERAGE OF 16-BIT NUMBERS
IN AN ARRAY

AIM: To implement ALP to find average of 16-bit numbers in array.

APPARTUS:
MASM Software, P.C.

ALGORITHM:

12. Start.
13. Initialize the data segment.
14. Initialize counter = 0.
15. Initialize pointer.
16. Initialize array base pointer.
17. Get the number.
18. Add sum to the number i.e. add array element.
19. Increment array pointer decrement counter.
20. Repeat steps 6, 7 & 8 under counter = 0.
21. Display average.
22. Stop.

PROGRAM:

DATA SEGMENT

DATA ENDS

CODE SEGMENT
ASSUME CS: CODE, DS; DATA

START:

INT 21H
CODE ENDS

END START

RESULT:

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp.No. 3(A)

ASSEMBLY LANGUAGE PROGRAM TO FIND LARGEST NUMBER IN AN
ARRAY

AIM: To implement ALP to find the maximum number in the array.

APPARTUS:
MASM Software, P.C.

ALGORITHM:

1. Start.
2. Initialize data segment.
3. Initialize the pointer.
4. Initialize counter = 0.
5. Initialize the array base pointer.
6. Get the maximum number.
7. Compare the number with maximum number.
8. If num> MAX, Max = num & increment pointer.
9. Decrement the counter.
10. If count = 0 stop or else repeat steps 6, 7, 8, 9.
11. Store maximum number.
12. Stop.

PROGRAM:

DATA SEGMENT

DATA ENDS

CODE SEGMENT
ASSUME CS:CODE,DS:DATA

START:

HLT

CODE ENDS
END START

RESULT:

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp.No. 03(B)

ASSEMBLY LANGUAGE PROGRAM TO FIND SMALLEST IN AN ARRAY

AIM: To implement ALP to find the minimum in the array.

APPARATUS:
MASM Software, P.C.

ALGORITHM:
1. Start.
2. Initialize the data segment.
3. Initialize the pointer.
4. Initialize counter = 0.
5. Initialize base pointer for an array.
6. Get the minimum number.
7. Compare number with minimum number.
8. If number < MIN, MIN = NUM & increment pointer.
9. Decrement the counter.
10. If count = 0 Stop ; otherwise go to BACK.
11. Store the minimum number.
12. Stop.

PROGRAM:

DATA SEGMENT

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START:

HLT

CODE ENDS

END START

RESULT:

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp.No.04(A)

ASSEMBLY LANGUAGE PROGRAM TO CONVERT BCD TO SEVEN SEGMENT

AIM: To implement ALP to convert BCD to SEVEN SEGMENT.

APPARATUS:
MASM Software, P.C.

ALGORITHM:

1. Initialize the data segment.
2. Get the first number in AL.
3. Load BX with the starting address of lookup table.
4. Result is displayed.
5. Stop.

PROGRAM:

DATA SEGMENT

DATA ENDS
CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START:

INT 21h
CODE ENDS

END START

RESULT:

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp.No. 4(B)

ASSEMBLY LANGUAGE PROGRAM TO SEARCH A NUMBER IN AN ARRAY

AIM: To implement ALP to search a number in an array.

APPARATUS: MASM Software, P.C.

ALGORITHM:
1. Start.
2. Initialize the data segment.
3. Initialize the counter.
4. Initialize base pointer for array.
5. Get the number to be searched in AL.
6. Clear direction flag.
7. Scan & check CX = 0.
8. Result is displayed.
9. Stop.

PROGARM:

DATA SEGMENT

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START:

INT 21H
CODE ENDS

END START

RESULT:

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp.No. 5(A)

ASSEMBLY LANGUAGE PROGRAM TO FIND FACTORIAL OF A GIVEN
NUMBER

AIM: To implement ALP to find factorial of a number.

APPARATUS:
MASM Software, P.C.

ALGORITHM:
1. Start.
2. Initialize data segment.
3. Get the number in AL.
4. Multiply the number with 8-bit number present in CL.
5. Increment the counter.
6. Compare with no.1
7. Display factorial of number.
8. Stop.

PROGRAM:
DATA SEGMENT

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START

INT 21H
CODE ENDS

END START

RESULT:

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp.No. 05(B)

ASSEMBLY LANGUAGE PROGRAM TO FIND NO. OF ONE’S IN A GIVEN 8-BIT
NUMBER

AIM: To implement ALP to find number of ONE’s in a given 8-bit number.

APPARATUS: MASM Software, P.C.

ALGORITHM:

1. Start.
2. Initialize the data segment.
3. Clear the base register.
4. Initialize the counter.
5. Rotate the number, check for ‘1’.
6. Result is displayed.
7. Stop.

PROGRAM:

DATA SEGMENT

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START:

INT 3H

CODE ENDS
END START

RESULT:

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp.No. 06

ASSEMBLY LANGUAGE PROGRAM TO GENERATE TRIANGULAR,
SQUARE & SAWTOOTH USING DAC

AIM: Write an 8086 program to interface 8255 PPI.
1. Generate saw tooth wave
2. triangular wave
3. Square wave using DAC interfacing

APPARATUS: 1) MP 8086 trainer kit
2) SMPS
3) DAC Interface module
4) Power Supply (5V)
5) 26 pin flat ribbon cable
6) 4/8 wire relamatic cable
7) Oscilloscope
8) CRO probes

6(A). GENERATION OF SAW TOOTH WAVE:-

ALGORITHM:

1. Port B is selected.
2. Contents of accumulator are initialized to zero.
3. Data is send to port.
4. Contents of accumulator are increased.
5. Comparing immediate with FF.
6. Jump on no zero to step 3.
7. Sending data to the port.
8. Jump to step 6.

PROGRAM:

MOV DX, 8807H
MOV AL, 80H
OUT DX, AL
MOV AL, 00H
MOV DX, 8801H

L1: OUT DX, AL
INC AL
JMP L1

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

EXPECTED WAVEFORM:

V

Amplitude

time t
period

EXPECTED RESULT:

Amplitude = Frequency =

Time Period =

6(B). TRIANGULAR WAVE GENERATION:

ALGORITHM:

1. Port B is selected.
2. Contents of acc. are initialized to zero.
3. Data is sent to port.
4. Content of acc is incremented.
5. Comparing immediate with FF.
6. Jump on no zero to step1.
7. Send data to the port.
8. Contents of acc. are decremented.
9. Compare immediate with 00.
10. Jump on non zero to step7.
11. Jump to step3.
12. Output on CRO is obtained.

PROGRAM:

MOV DX, 8807H
MOV AL, 80H
OUT DX, AL
MOV AL, 00H
MOV DX, 8801H

L1: OUT DX, AL
INC AL
CMP AL, FFH
JNZ L1

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

L2: OUT DX, AL
DEC AL
JNZ L2
JMP L1
INT A5

EXPECTED WAVEFORM:

V

amplitude

time period time

EXPECTED RESULT:

Amplitude = Frequency =

Time Period =

6(C). SQUARE WAVE FORM GENERATION

0100 MOV DX, 8807H

MOV AL, 80H; Activation of port A

0105 OUT DX, AL; Output to I/O Port

MOV AL, 00H; Initialize AL with 00

MOV DX, 8801H

OUT DX, AL; Output to I/O Port

CALL 0117; program control to 0117 location

MOV AL, FFH ;Initialize AL with FF

OUT DX, AL; Output to I/O Port

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

CALL 0117; program control to 0117 location

JMP 0105; jump to location of 0105

0117 MOV CX,015D;setting the amplitude

NOP ; no operation

NOP ; no operation

RET

EXPECTED WAVEFORM:

EXPECTED RESULT:

Amplitude = Frequency =

Time Period =

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 7(A)(i)

ASSEMBLY LANGUAGE PROGRAM FOR MULTIBYTE ADDITION

AIM: Write 8051 program to implement multiple byte addition (addition of two 32-bit no’s).

APPARATUS:
1. MC 8051 trainer kit
2. SMPS

THEORY:
Generally 8 bits are called a byte, 16 bits are called as word, 32 bits are called as

double word, and the data more than 4 byte is called as Multiple byte.

ALGORITHM:

1. Start.
2. Get the number 100.Get the first number.
3. Add result with second number.
4. Store in R0 (or) in first number register.
5. Repeat the step for given no. of inputs.
6. Output is displayed in R0, R1, R2, R3.
7. Stop.

PROGRAM:

ADDR MNEMONICS OPERANDS
6000 MOV A, R0

6001 ADD A, R4

6002 MOV R0, A
6003 MOV A, R1

6004 ADDC A, R5

6005 MOV R1, A
6006 MOV A, R2

6007 ADDC A, R6

6008 MOV R2, A
6009 MOV A, R3

600A ADDC A, R7

600B MOV R3, A
600C RET

EXPECTED RESULTS:

Inputs: R0 = 11h, R1 = 11h, R2 = 11h, R3 = 11h
R4 = 22h, R5 = 22h, R6 = 22h, R7 = 22h

Outputs: R0 = 33h, R1 = 33h, R2 = 33h, R3 = 33h

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 7(A)(ii)

ASSEMBLY LANGUAGE PROGRAM FOR MULTIBYTE SUBTRACTION

AIM: Write 8051 program to implement subtraction of two 32 bit numbers.

APPARATUS:
1. MC 8051 trainer kit
2. SMPS

THEORY:
Generally 8 bits are called a byte, 16 bits are called as word, 32 bits are called as

double word. Here we are subtracting two bytes, which are stored in the register. By using the
instruction SUBB we can subtract byte by byte.

ALGORITHM:

1. Start.
2. Get the first number.
3. Subtract with the second number.
4. Store result in R0.
5. Repeat the above steps for given no. of inputs.
6. Output is displayed in R0, R1, R2, R3.
7. Stop.

PROGRAM:

ADDR MNEMONICS OPERAND
6000 CLR C
6001 MOV A, R0

6002 SUBB A, R4

6003 MOV R0, A
6004 MOV A, R1

6005 SUBB A, R5

6006 MOV R1, A
6007 MOV A, R2

6008 SUBB A, R6

6009 MOV R2, A
600A MOV A, R3

600B SUBB A, R7

600C MOV R3, A
600D RET

EXPECTED RESULT:
Inputs: R0 = 55h, R1 = 55h, R2 = 55h, R3 = 55h

R4 = 22h, R5 = 22h, R6 = 22h, R7 = 22h

Outputs: R0 = 33h, R1 = 33h, R2 = 33h, R3 = 33h

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 7(B)(i)

ASSEMBLY LANGUAGE PROGRAM FOR MULTIPLICATION OF 32-BIT
NUMBERS

AIM: Write 8051 program to implement multiplication.

APPARATUS:
1. MC 8051 trainer kit
2. SMPS

THEORY:
After multiplication, if it is 16 bit multiplication the result will be stored in register

A and register B. If it is 8 bit multiplication then the result will be store in register A.

ALGORITHM:

1. Start.
2. Get the first number.
3. Store the number.
4. Get the second number.
5. Multiply A & B.
6. Increment data pointer.
7. Get the higher byte & lower byte of result.
8. Stop.

PROGRAM:

ADDR MNEMONICS OPERANDS
6000 MOV DPTR, #20A1
6003 MOVX A, @DPTR
6004 MOV F0, A
6006 MOV DPTR, #20A0
6009 MOVX A, @DPTR
600A MUL AB
600B MOV DPTR, #20A2
600E MOVX @DPTR, A
600F INC DPTR
6010 MOV A, F0

6012 MOVX @DPTR, A
6013 RET

EXPECTED RESULT:

Inputs: 20A0 = 05h & 20A1 = 04h

Output: 20A2 = 14h

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 7(B)(ii)

ASSEMBLY LANGUAGE PROGRAM FOR DIVISION OF TWO 8 BIT NUMBERS

AIM: Write 8051 program to implement division operation.

APPARATUS:
1. MC 8051 trainer kit
2. SMPS

THEORY:
After division the quotient is stored in register ‘A’ and the reminder will be stored in

register ‘B’.

ALGORITHM:

1. Start.
2. Get the first number.
3. Store the number.
4. Get the second number.
5. Divide A & B.
6. Increment data pointer.
7. Get the quotient, reminder & display.
8. Stop.

PROGRAM:

ADDR MNEMONICS OPERANDS
6000 MOV A, #00H
6003 MOV DPTR, #20A0
6004 MOVX A, @DPTR
6006 MOV F0, A
6009 MOV A, #00H
600A INC DPTR
600B MOVX A, @DPTR
600C DIV A, B
600D INC DPTR
600E MOVX @DPTR, A
6011 MOV A, F0

6012 INC DPTR
6013 MOVX @DPTR, A
6014 RET

EXPECTED RESULT:

Inputs: 20A0 = 15h & 20A1 = 03h

Output: 20A2 = 07h & 20A3 = 00h

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 8(A)(i)

ASSEMBLY LANGUAGE PROGRAM FOR FINDING MAXIMUM NUMBER FROM
8-BIT TEN NUMBERS

AIM: Write a program for finding the minimum number from 8-bit ten numbers in 8051 kit.

APPARATUS:
1. MC 8051 trainer kit
2. SMPS

PROGRAM:

6000 MOV DPTR, #7000 ; initialize the pointer to memory where
numbers are stored

6003 MOV R0, #0A ; initialize the counter

6005 MOV F0, #00 ; maximum = 0

6008 AGAIN: MOVX A, @DPTR ; get the number from the memory

6009 CJNE A, F0, 02 ; NE = 600E – 600C=02, compare number with
maximum

600C AJMP 6012 ; address of SKIP = 6012, if equal go to SKIP

600E NE: JC 02 ; SKIP = 6012- 6010, if not equal check for
carry, if carry go to SKIP

6010 MOV F0,A ; otherwise maximum = number

6012 SKIP: INC DPTR ; increment memory pointer

6013 DJNZ R0,F3 ; AGAIN = FF – (6013-6007), decrement
count, if count = 0 stop, otherwise go to AGAIN

6015 RET

EXPECTED RESULT:

Input:
7000 08
7001 02
7002 03
7003 05
7004 06
7005 01

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

7006 04
7007 07
7008 19
7009 00

OUTPUT

B=19h

Forward Jump:

For SKIP and NE label=

Address of location where to jump – address of location of next instruction after

jump instruction => 600E-600C=02

Backward Jump:

For AGAIN label=

No. of bytes= (address of location of the count)-(address of location where to jump)

Count=FF- No. of bytes=FF-(6013-6007)=F3

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 8(A)(ii)

ASSEMBLY LANGUAGE PROGRAM FOR FINDING MINIMUM NUMBER FROM
8-BIT TEN NUMBERS

AIM: Write a program for finding the minimum number from 8-bit ten numbers in 8051 kit.

APPARATUS:
1. MC 8051 trainer kit
2. SMPS

PROGRAM:

6000 MOV DPTR, #7000 ; initialize the pointer to memory where
numbers are stored

6003 MOV R0, #0A ; initialize the counter

6005 MOV F0, #FF ; minimum =FF

6008 AGAIN: MOVX A, @DPTR ; get the number from the memory

6009 CJNE A, F0, 02 ; NE = 600E – 600C=02, compare number with
minimum

600C AJMP 6012 ; address of SKIP = 6012, if equal go to SKIP

600E NE: JNC 02 ; SKIP = 6012- 6010, if not equal check for
carry, if carry go to SKIP

6010 MOV F0,A ; otherwise minimum = number

6012 SKIP: INC DPTR ; increment memory pointer

6013 DJNZ R0,F3 ; AGAIN = FF – (6013-6007), decrement

count, if count = 0 stop, other wise go to
AGAIN

6015 RET

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

RESULT:

INPUT:

7000 08
7001 02
7002 03
7003 05
7004 06
7005 01
7006 04
7007 07
7008 19
7009 05

OUTPUT

B=01h

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 8(B)

ASSEMBLY LANGUAGE PROGRAM FOR EXCHANGE OF DATA

AIM: Write a program for exchange of data in 8051.

APPARATUS:
3. MC 8051 trainer kit
4. SMPS

ALGORITHM:

1. Start.
2. Get the first number in Accumulator
3. Get the second number in R0

4. Swap A, and exchange with R0.
5. Display the result.
6. Stop.

PROGRAM:

ADDR MNEMONICS OPERANDS
6000 MOV A, #C5H
6002 MOV R0, #C6H
6004 SWAP A
6005 XCH A, R0

6006 RET

EXPECTED RESULT:

‘A’ becomes 5Ch and moved to R0 = 5Ch

R0 = C6h is moved to A = C6h

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 9

ASSEMBLY LANGUAGE PROGRAM FOR REVERSE AND LOGICAL ‘OR’

AIM: Write a program for reverse the numbers and apply logic instruction OR gate to the
given

numbers using 8051kit.

APPARATUS:
1. MC 8051 trainer kit
2. SMPS

PROGRAM:

MOV DPL, #34 ; instead of dpl, type 82

MOV DPH, #12 ; instead of dph, type 83

MOV A, DPL

RL A

RL A

RL A

RL A

MOV DPL, A

MOV A, DPH

RL A

RL A

RL A

RL A

MOV DPH, A

ORL A, DPL

RET

EXPECTED RESULT:

Logical ‘OR’ result for given numbers 43h & 21h is A = 63h

DPL= 43h

DPH =21h

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 10

ASSEMBLY LANGUAGE PROGRAM FOR TRAFFIC LIGHT CONTROLLER

AIM: Write an assembly language program for block traffic light control using keil software
(AT89C51).

APPARATUS:
1. 8051 kit
2. P.C.
3. Traffic light control kit
4. 24 pin FRC cable

PROGRAM:

MOV P2,#0H ;PORT2
MOV P1,#0H ;PORT1
MOV P3,#0H ;PORT3
MOV P0,#0H ;PORT0

MOV P0,#61H
MOV P1,#68H
MOV P3,#86H
ACALL DLY4 ; DELAY OF 4 SEC FOR RED LED

STRT:
MOV P0,#64H
MOV P1,#58H
MOV P3,#86H
ACALL DLY4 ; 1 GREEN

MOV P0,#62H
MOV P1,#68H
MOV P3,#86H
ACALL DLY2 ;2 YELLOW

MOV P0,#61H
MOV P1,#68H
MOV P3,#86H
ACALL DLY4 ;3ARED

MOV P0,#49H
MOV P1,#68H
MOV P3,#26H
ACALL DLY4 ;3BGREEN

MOV P0,#51H
MOV P1,#68H

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

MOV P3,#46H
ACALL DLY2 ;4 YELLOW

MOV P0,#61H
MOV P1,#68H
MOV P3,#86H
ACALL DLY4 ;5A RED

MOV P0,#61H
MOV P1,#62H
MOV P3,#92H
ACALL DLY4 ;5B GREEN

MOV P0,#61H
MOV P1,#64H
MOV P3,#8AH
ACALL DLY2 ;6 YELLOW

MOV P0,#61H
MOV P1,#68H
MOV P3,#86H
ACALL DLY4 ;7A RED

MOV P0,#21H
MOV P1,#29H
MOV P3,#87H
ACALL DLY4 ;7B GREEN

MOV P0,#0A1H
MOV P1,#0A8H
MOV P3,#86H
ACALL DLY2 ;8A YELLOW

MOV P0,#61H
MOV P1,#68H
MOV P3,#86H
ACALL DLY4 ;8B RED

LJMP STRT

DLY4: LCALL DELAY ; DELAY FOR 4 SEC
LCALL DELAY
LCALL DELAY
LCALL DELAY
RET

DLY2: LCALL DELAY ; DELAY FOR 2 SEC
LCALL DELAY
RET

DELAY: ; DELAY FOR 1 SEC

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

MOV R3,#0FH
D3: MOV R1,#0FFH
D2: MOV R2,#0FFH
D1: DJNZ R2, D1

DJNZ R1,D2
DJNZ R3,D3
RET

RESULT:

Traffic light control is executed successfully

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 11

ASSEMBLY LANGUAGE PROGRAM FOR ACTIVATING PORTS &
GENERATION OF SQUARE WAVE

AIM: Write an assembly language program for generating square waveform using keil
software (AT89C51).

APPARATUS:
1. Keil software
2. P.C.

PROGRAM(1):

MOV SP,#7H

CLR P1.0

BACK: MOV P1,#00H

ACALL DELAY

SETB P1.0

MOV P1,#0FFH

ACALL DELAY

SJMP BACK

DELAY:MOV R1,#0FFH

AGAIN:DJNZ R1,AGAIN

RET

END

PROGRAM(2):

MOV SP,#7H ;initialize stack pointer
;since we are using subroutine programe

BACK:MOV P1,#00H ; send 00h on port 1 to generate
;low level of square wave

ACALL DELAY ; wait for some time
MOV P1,#0FFH ;send ffh on port 1 to generate

;high level of square wave
ACALL DELAY ; wait for some time
SJMP BACK ;repeat the sequence
DELAY:MOV R1,#0FFH ;load count
AGAIN:DJNZ R1,AGAIN ;decrement count and repeat the process

;until count is zero
RET ;return to main programe

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

EXPECTED RESULTS:

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1
P1.0

Program (1) : Activating PORT1

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1
P1.0

Program (2) : Activating Individual PORT1 pin 0

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 12(A)

ASSEMBLY LANGUAGE PROGRAM FOR ADDITION OF TWO NUMBERS

AIM: Write an assembly language program for adding two 8-bit numbers using keil
Software (AT89C51).

APPARATUS:
1. Keil software
2. P.C.

PROGRAM:

MOV A, #05H
MOV B,#02H
ADD A,B
END

RESULT:

In accumulator, a= 7h

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 12(B)

ASSEMBLY LANGUAGE PROGRAM FOR MULTIBYTE ADDITION

AIM: Write an assembly language program for multibyte addition using keil software
(AT89C51).

APPARATUS:
1. Keil software
2. P.C.

PROGRAM:

MOV R0,#20H
MOV R1,#30H
MOV R3,#04H
CLR C
CLR A
AGAIN: MOV A,@R0

ADDC A,@R1

MOV @R1,A

INC R0

INC R1

DJNZ R3,AGAIN

END

RESULT:

Inputs:
i: 0x20 -- 01h, 02h, 03h, 04h
i: 0x30 -- 05h, 06h, 07h, 08h

Output:
i: 0x30 -- 06h, 08h, 0Ah, 0Ch

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 13(A)(i)

ASSEMBLY LANGUAGE PROGRAM FOR ASCENDING ORDER OF A GIVEN
NUMBERS

AIM: Write an assembly language program for arranging in ascending/descending order
using keil software (AT89C51).

APPARATUS:
1. Keil software
2. P.C.

PROGRAM FOR ASCENDING ORDER:

MOV R0,#5 ; INITIALIZE COUNTER 1
AGAIN: MOV DPTR,#2000H ; initialize memory pointer

MOV R1,#4 ; initialize counter 2
BACK: MOV R2,DPL ; save lower byte of memory address

MOVX A,@DPTR ; Get the num ber
MOV B,A ; Save the number
INC DPTR ; Increment the memory pointer
MOVX A,@DPTR ; Get the next number
CJNE A,B,n ; If not equal check for greater or less
AJMP SKIP ; Otherwise go to skip

n: JNC SKIP ;If
MOV DPL,R2 ;Exchange
MOVX @DPTR,A
INC DPTR
MOV A,B
MOVX @dptr,A

SKIP: DJNZ R1,BACK ;If R1 not equal to 0 go to BACK
DJNZ R0,AGAIN ;If R0 not equal to 0 go to AGAIN

RESULT:

Inputs:
x: 0x2000 -- 05h, 02h, 01h, 04h

Output:
x: 0x2000 -- 01h, 02h, 04h, 05h

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 13(A)(ii)

ASSEMBLY LANGUAGE PROGRAM FOR DESCENDING ORDER OF A GIVEN
NUMBERS

AIM: Write an assembly language program for arranging in ascending/descending order
using keil software (AT89C51).

APPARATUS:
1. Keil software
2. P.C.

PROGRAM FOR DESCENDING ORDER:

MOV R0,#5 ; INITIALIZE COUNTER 1
AGAIN: MOV DPTR,#2000H ; initialize memory pointer

MOV R1,#4 ; initialize counter 2
BACK: MOV R2,DPL ; save lower byte of memory address

MOVX A,@DPTR ; Get the num ber
MOV B,A ; Save the number
INC DPTR ; Increment the memory pointer
MOVX A,@DPTR ; Get the next number
CJNE A,B,n ; If not equal check for greater or less
AJMP SKIP ; Otherwise go to skip

n: JC SKIP ;If
MOV DPL,R2 ;Exchange
MOVX @DPTR,A
INC DPTR
MOV A,B
MOVX @dptr,A

SKIP: DJNZ R1,BACK ;If R1 not equal to 0 go to BACK
DJNZ R0,AGAIN ;If R0 not equal to 0 go to AGAIN

RESULT:

Inputs:
x: 0x2000 -- 05h, 02h, 01h, 04h

Output:
x: 0x2000 -- 05h, 04h, 02h, 01h

MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY

MICROPROCESSORS & MICROCONTROLERS LAB

Exp. No. 13(B)

ASSEMBLY LANGUAGE PROGRAM FOR DATA TRANSFER

AIM: Write an assembly language program for block move from one address to another
address using keil software (AT89C51).

APPARATUS:
1. Keil software
2. P.C.

PROGRAM:

MOV R0,#20H

MOV R1,#30H

MOV R3,#10H

CLR A

AGAIN:MOV A,@R0

MOV @R1,A

INC R0

INC R1

DJNZ R3,AGAIN

END

RESULT:

Inputs:
i: 0x20 -- 01h, 02h, 03h, 04h

Output:
i: 0x30 -- 01h, 02h, 03h, 04h

