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Abstract: Millimeter-wave (mm-Wave) have emerged as a potential leading 

technology for the 5G cellular systems due to the enormous availability of high 

radio-frequency spectrum, which can deliver extreme data speed and enhance 

spectral efficiency (SE). An economical architecture of hybrid precoder (HP) 

is widely used in mm-Wave massive MIMO systems (mm-WmM) to 

recompense for the severe propagation loss of the mm-Waves. This paper 

examines the design of the hybrid precoder and combiner (HPC) in  mm-WmM 

by integrating Artificial Intelligence (AI) based optimization algorithm. AI is 

going to be a key component to enhance the performance of 5G wireless 

communications and beyond. The emerging AI based computation using 

Hierarchical Particle Swarm Optimization technique (HPSO) is proposed to 
design a HPC to maximize the SE in mm-Wave massive MIMO systems. 

Results obtained from simulations demonstrate the improved performance of 

the HPSO algorithm in contrast to the existing algorithms and can accomplish 

close to the optimal performance.     

Index Terms – Hybrid precoding/combining, mm-Wave, SNR; Spectral 

efficiency, PSO  

 

 

1.  Introduction 

Every new generation of cellular system takes a significant step towards higher capabilities compared 

to existing ones. The mm-Wave communication with very high speeds and low latency makes it a 
suitable and an eminent candidate for 5G cellular systems [1]-[4]. In mm-Wave massive MIMO systems 

achieving high-quality communication requires the use of large antenna arrays at both the base station 

and mobile stations [5]. One of the important problems for mm-Wave communications is the huge 

direction and penetration losses at these frequencies. Beamforming compensates for any signal loss by 
switching automatically to the strongest beam, and the switching of the beam is done instantaneously to 

achieve a wide coverage using mm-Wave spectrum. Many industries are committed to improve the 

speed and connectivity in 5G cellular mobiles to meet the drastic growth in the traffic [6]. Recently, 
mm-Wave with a spectrum of 30GHz to 300GHz has gained huge attention as a prominent part of 5G 

and may also to be an integral part of future generation 6G as well. The mm-Waves and also sub-mm-

Waves or TeraHertz waves that are 1/10th of the mm-Waves are in enormous research by the industries 

around the globe.  

mailto:nazeerunnisa@mjcollege.ac.in
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Nevertheless, because of atmospheric attenuation, rain, poor penetration, mm-Wave signals confront 
extreme propagation loss compared to current sub-6GHz cellular bands [6]. Vast antennas are placed in 

the same physical dimension due to the short wavelength of mm-Wave. Massive antenna arrays provide 

beam-forming gains to get over the path loss due to propagation and synthesize highly directional beams. 
It also allows multiple data streams to be transmitted simultaneously leading to significant improvement 

in SE.  

 Full-digital precoding (DP) is performed in the conventional MIMO systems, which can 
monitor the signal’s magnitudes and phases. However, a committed Radio Frequency (RF) chain is 

needed for each antenna component that makes it unfeasible, very expensive and it consumes high 

energy. To tackle the above problem, HP architecture is proposed, where hardly fewer RF chains is 

needed between a low-dimensional DP and a high-dimensional AP [7] [8].  HP is given attention in mm-

WmM to improve system performance [9][10]. The earlier work on HP technology conveys that 

optimization of SE can be achieved by reducing the euclidean distance between HP and a conventional 

full-DP [11]. This process makes the HP layout a question of matrix factorization, which is difficult to 
solve due to constraints in analog hardware device. Using the sparse scattering characteristics of mm-

Wave streams, HP model based on the codebook is studied and the corresponding analog parts are 

chosen from predefined dictionaries such as discrete Fourier transform beam formers [5], [12], [13]. An 
Orthogonal matching pursuit (OMP) algorithm, offers good quality HPC are proposed in papers [1]-

[5],[18]. Further to reduce the OMP algorithm's complexity, a partially modified algorithm was 

suggested [14] [15]. The AP was designed by implementing the interior-point method in [16]. The author 
transforms the optimization problem in to a simple form using Coordinate Descent Method (CDM) 

algorithm and then extracts the closed-form expression to construct AP [17]. 

 Two alternating algorithms are proposed in [19], the first is an alternative minimization 
algorithm based on Manifold optimization (MO-AltMin) and second one is the Phase Extraction AltMin 

(PE-AltMin) algorithm. Nonetheless, the number of unit modulo constraints can be considerably large 

due to the large antenna range involving high computation complexity for the MO-AltMin whereas its 
lesser for PE-AltMin , but it also causes some performance loss. The AP and combiner are implemented 

by iterative phase matching algorithm using phase shifters with low resolution [21], [23]. A codebook-

based joint HP and a multi-stream combiner model for mm-WmM is proposed in [20]. The Gram-
Schmidt orthogonalization also suggests a HP algorithm for a wideband mm-Wave system with minimal 

channel feedback. A heuristic algorithm for designing single-user and multi-user mm-Wave systems 

with hybrid precoder is proposed in [22], [24]. 
 AI has created a tremendous impact and value in different industries, it is difficult to think of 

an industry without AI in upcoming years from now. PSO is an intelligent evolutionary computation 

and a stochastic optimization algorithm inspired by nature, based on swarm intelligence, such as a shoal 

of fish, a flock of birds etc. to find food (Maximization) or to risk of predators (Minimization), by 
dividing in to groups. Hierarchical Particle Swarm Optimization technique (HPSO) is proposed for 

precoding design to obtain the optimal precoding vector for maximizing the SE in mm-Wave massive 

MIMO system. In general, rather than reducing the Euclidean distance between the HP and the optimal 
DP, the HP can be modelled by explicitly optimizing SE to achieve close to optimal performance. Thus 

HPSO algorithm for HP is proposed for the development of AP and DP, both in narrowband and 

wideband mm-Wave systems. 
 Here main contributions are: A hierarchical approach is followed where the HP optimization 

problem is divided in to analog RF precoder and digital baseband precoder and the optimal AP is 

modelled using this strategy. Then the optimal AP is set, and the optimal DP is evaluated to improve the 
SE. Optimization problem of the AP is partitioned in to a sequence of sub-problems and then for each 

sub problem its closed-form solution is derived. The results portrays that the proposed HPSO algorithm 

in mm-Wave MIMO system can achieve very close to optimal DP performance with the low 

computation complexity. 
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 In this paper, section2 includes the process, channel model and the problem formulation, the 

section3 explores the proposed HPSO algorithm for HPC in mm-WmM, section4 holds the simulation 

results and finally the section5 reveals the conclusion and future scope of the work. 
 

2.  System Representation 

A mm-Wave massive MIMO HPC transmission system model with a fully connected structure of a 

single-user network is as shown in Figure.1. Here 𝑁𝑇𝑋  represents the number of transmitting antennas, 

𝐿𝑡 , 𝐿𝑟  represents the number of RF chains at the precoder, combiner respectively (𝐿𝑡 = 𝐿𝑟 = 𝑁𝑅𝐹), 𝑁𝑠 

represents the incoming data stream, 𝑁𝑅𝑋
 represents the number of receiving antennas, 𝑇𝑋/ 𝑅𝑋 represents 

the transmitter/receiver, 𝐹𝐵 represents the digital baseband precoder, 𝐹𝑅 represents the analog RF 

precoder , 𝑊𝑅 represents the analog RF combiner and 𝑊𝐵 represents the digital baseband combiner at 

the 𝑅𝑋. To relay the 𝑁𝑠 , they are subject to the constraints that Ns ≤ 𝑁𝑅𝐹 ≤ 𝑁𝑇𝑋
.  Assume that 𝐿𝑡 =

𝐿𝑟 = 𝑁𝑠 to support a multi-stream transmission and to minimize the mm-Wave MIMO system's energy 

cost. The incoming symbols are processed using 𝐿𝑡  𝑋 𝑁𝑠  digital baseband precoder 𝐹𝐵  and translated 

via 𝐿𝑡  to the RF domain. Then 𝑁𝑇𝑋
 𝑋 𝐿𝑡  , 𝐹𝑅  using phase shifters (PSs) precodes these symbols, and 

sends these data streams through 𝑁𝑇𝑋
 . 

 

 
 

Figure 1: A HPC fully connected structure in mm-Wave MIMO system 
 

The 𝑁𝑇𝑋
 processes the signal given by (1) 

 

𝑥 = 𝐹𝑅  𝐹𝐵𝑠                               (1) 

Where s is the 𝑁𝑠 Χ 1 symbol vector such that  𝔼[𝑠𝑠𝐻] =
1

𝑁𝑠
Ι 𝑁𝑠 Therefore, the DP allows for both 

amplitude and phase changes. A group of variable PSs are used to implement the analog RF precoder 

𝐹𝑅 whose components have a constant amplitude constraint  |𝐹𝑅(𝑎,𝑏)| = 1 and the transmit power is 

‖𝐹𝐵𝐹𝑅‖𝐹
2 = 𝑁𝑠 . 

 An expanded Saleh-Valenzuela channel model for narrowband mm-Wave system is 

considered, the signal received at the 𝑅𝑋 is given by (2)  

 

�̅� = √𝜌𝐻𝐹𝑅𝐹𝐵𝑠 + 𝑤𝑛                           (2) 
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Where  �̅� is the 𝑁𝑠 𝑋 1 received vector, 𝜌 is the average received power, 𝐻 is the 𝑁𝑅𝑋
 × 𝑁𝑇𝑋

 channel 

matrix, 𝑤𝑛 is an AWGN noise vector of independent and identically distributed (i.i.d) with 𝜖 𝒩(0, 𝜎𝑤𝑛
2 )  

mean=0 and variance 𝜎𝑤𝑛
2  , such that 𝔼[‖𝐻‖𝐹

2 ] = 𝑁𝑇𝑋
𝑁𝑅𝑋

 .  

 Assume that both the 𝑇𝑋 and 𝑅𝑋  has complete information of the channel state information 

(CSI) of 𝐻.  At the 𝑅𝑋, a  𝐿𝑟𝑋 𝑁𝑅𝑋
 , 𝑊𝑅 and 𝑁𝑠 𝑋 𝐿𝑟 , 𝑊𝐵 combiners processes the received signal. So, 

the received signal after combining is given as (3)  
 

�̅� = √𝜌𝑊𝐵
𝐻𝑊𝑅

𝐻𝐻𝐹𝑅𝐹𝐵𝑠 + 𝑊𝐵
𝐻𝑊𝑅

𝐻𝑛              (3) 

 

Just like 𝐹𝑅, the 𝑊𝑅 is also implemented with PSs and meets the unit modulo constraints, i.e. |𝑊𝑅(𝑎,𝑏)| =

1. The Gaussian signal is processed through the mm-Wave channel, results in SE given in (4) 
 

𝑅 = log2 det (I𝑁𝑠
+ 

𝜌

𝑁𝑠
𝑅𝑛

−1 𝑊𝐵
𝐻𝑊𝑅

𝐻𝐻𝐹𝑅𝐹𝐵 𝑋 𝐹𝐵
𝐻𝐹𝑅

𝐻𝐻𝐻𝑊𝑅𝑊𝐵𝐵)         (4) 

 

Where 𝑅𝑤𝑛 = 𝜎𝑤𝑛
2 𝑊𝐵

𝐻𝑊𝑅
𝐻𝑊𝑅𝑊𝐵 is the noise covariance matrix after combining. The HPC for a mm-

Wave MIMO systems are modelled jointly to optimize SE. Considering hardware constraint, the 

corresponding problem can be written as (5) 

 

arg 𝑚𝑎𝑥
𝐹𝐵, 𝐹𝑅 , 𝑊𝑅 , 𝑊𝐵

    𝑅      𝑠. 𝑡 {

‖𝐹𝑅𝐹𝐵‖𝐹
2  =  𝑁𝑆 ,           

|𝐹𝑅(𝑎,𝑏)
|   =  1,     ∀𝑎, 𝑏

|𝑊𝑅(𝑎,𝑏)|  =  1,       ∀𝑎, 𝑏

                  (5) 

 
This problem of optimization is a combined optimization of the HPC. Due to the non-convex restriction 

on 𝐹𝑅  and 𝑊𝑅  , however , it is challenging to solve. The objective function is simplified further to yield 

satisfactory results in the upcoming sections. 

2.1.  Millimeter Wave Channel model 
 An expanded Saleh-Valenzuela channel model based on a narrowband clustered mm-Wave 

system is used. It is believed that the matrix channel 𝐻 has 𝑆𝑐𝑙𝑢scattering clusters, each of which includes 

𝑃𝑝𝑎𝑡ℎpropagation paths. It is therefore possible to write channel 𝐻 given in equation (6) 

 

𝐻 = 𝜂 ∑ ∑ 𝐶𝒢𝑎𝑙 𝛼𝑟(∅𝑎𝑙
𝑟 , 𝜃𝑎𝑙

𝑟 ) 𝛼𝑡(∅𝑎𝑙
𝑡 , 𝜃𝑎𝑙

𝑡 )𝐻𝑃𝑝𝑎𝑡ℎ

𝑙=1
𝑆𝑐𝑙𝑢
𝑎=1                (6) 

 

Where 𝜂 is a normalization factor such as 𝜂 = √
𝑁𝑇𝑋

𝑁𝑅𝑋

𝑆𝑐𝑙𝑢𝑃𝑝𝑎𝑡ℎ
 , 𝐶𝒢𝑎𝑙  is the complex gain of the 𝑙-th ray in 

the 𝑎-th scattering cluster. Furthermore 𝛼𝑟(∅𝑎𝑙
𝑟 , 𝜃𝑎𝑙

𝑟 ) 𝑎𝑛𝑑  𝛼𝑡(∅𝑎𝑙
𝑡 , 𝜃𝑎𝑙

𝑡 )𝐻 are the array response vectors 

at the 𝑅𝑋  and 𝑇𝑋, where ∅𝑎𝑙
𝑟 (𝜃𝑎𝑙

𝑟 ) and ∅𝑎𝑙
𝑡 (𝜃𝑎𝑙

𝑡 )   stand for azimuth and elevation angles of arrivals and 

angle of departures (AoAs and AoDs), respectively.  

For uniform planar array (UPA) in the 𝑦𝑧 − 𝑝𝑙𝑎𝑛𝑒2 with W and 𝐻 elements on the 𝑦 and 𝑧 axes 

respectively, the array response vectors are expressed by (7)   

 

𝑢𝑝𝑎𝑎𝑟𝑟𝑎𝑦(∅, 𝜃) =
1

√𝑁
[ 1, … , 𝑒𝑗𝑘𝑑(𝑚 sin(∅) sin(𝜃)+𝑛 cos(𝜃)),. … , 𝑒𝑗𝑘𝑑((𝑊−1) sin(∅) sin(𝜃)+(𝐻−1) cos(𝜃))]𝑇 (7)               

              

Where 𝑑 is the antenna spacing, 𝑘 =
2𝜋

𝜆
 and 𝜆 is the signal wavelength, and 0 ≤ 𝑚 ≤ 𝑊 and 0 ≤

𝜆
𝑛

≤

𝑊 indices in 2D plane and antenna array size is N=WH. 
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3.  Hierarchical Particle Swarm Optimization for HP 

Initially the design of the HP is considered and then the proposed HPSO algorithm is implemented to 

obtain the optimal AP and DP. Since the HPC have similar architecture and computation formulation, 
the same algorithm can be used to design the hybrid combiner. 

3.1.  Hybrid Precoder (HP) Design  

  Here the main aim is to intend a HP design to optimize the transceiver's SE in (5). Nonetheless, 
this issue in HPC involves joint optimization, which is difficult to solve. To simplify the design of the 

transceiver, the problem of joint 𝑇𝑋 − 𝑅𝑋   optimization is temporarily decoupled and HP model is 

considered in (8) as 

 

𝑎𝑟𝑔 max 𝑙𝑜𝑔2 det (Ι +
𝜌

𝑁𝑠𝜎𝑤𝑛
2 𝐻𝐹𝑅𝐹𝐵𝐹𝐵

𝐻𝐹𝑅
𝐻𝐻𝐻)

𝐹𝑅 ,  𝐹𝐵                                                                         
          (8) 

 

       𝑠. 𝑡 {
‖𝐹𝑅𝐹𝐵‖𝐹

2 = 𝑁𝑠    ∀𝑎, 𝑏

 𝐹𝑅(𝑎, 𝑏) = 1,      ∀𝑎, 𝑏
 

 
Clearly, due to 𝐹𝑅 's unit modulo constraint, it is intractable to jointly optimize 𝐹𝐵 and 𝐹𝑅. A centralized 

approach for developing DP and AP is followed inspired by [22]. The water-filling method is used in 

the first part to design the optimal  𝐹𝐵 , assuming that AP is fixed. In the second part, focus is on AP 

design based on the optimized DP  𝐹𝐵  . The  𝐹𝑅 optimization problem is decimated into a series of sub-

problems and the HPSO algorithm is used to design each component of 𝐹𝑅  until convergence. 

3.2.  Digital Precoder (DP) Design 

 Assume that AP is fixed, consider the DP design to enhance the SE. Further simplifying HP 

design and decouple the DP and AP in the power constraint, and set   𝐹𝐵 = √(𝐹𝑅
𝐻𝐹𝑅) �̃�𝐵 where �̃�𝐵 is a 

dummy variable, and then bring  𝐹𝐵  in to (8), hence the DP design problem can be rewritten as(9) 

 

𝑎𝑟𝑔 max 𝑙𝑜𝑔2 det (Ι +
𝜌

𝑁𝑠𝜎𝑤𝑛
2 𝐻𝑒𝑓𝑓�̃�𝐵�̃�𝐵

𝐻𝐻𝑒𝑓𝑓
𝐻) 

          �̃�𝐵                                                                             
                     (9) 

         𝑠. 𝑡.  ‖�̃�𝐵‖
𝐹

2
= 𝑁𝑠        

            

Where 𝐻𝑒𝑓𝑓 = 𝐻𝐹𝑅 (√𝐹𝑅
𝐻𝐹𝑅  ) is an effective channel, the objective function in (9) has only one �̃�𝐵 as 

the optimization variable. The corresponding solution of �̃�𝐵 is given as (10) 

 

                           �̃�𝐵 = 𝑆𝑣𝑒𝑐𝐹𝑑𝑖𝑎𝑔                       (10)

      

Where 𝑆𝑣𝑒𝑐   represents first 𝑆𝑛 column of right singular vectors of   𝐻𝑒𝑓𝑓 .  𝐹𝑑𝑖𝑎𝑔 is a diagonal matrix, 

whose elements are water-filling power control solution. The optimal solution is found given by (11) 
 

𝐹𝐵 = √𝐹𝑅
𝐻𝐹𝑅  �̃�𝐵 = √𝐹𝑅

𝐻𝐹𝑅𝑆𝑣𝑒𝑐𝐹𝑑𝑖𝑎𝑔                                              (11) 
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3.3.  Analog precoder (AP) design 

 Here the focus is on the AP design to optimize SE, for the optimal digital precoder. It was 

shown in [22] that the AP is highly likely to satisfy 𝐹𝑅
𝐻𝐹𝑅 ∝ Ι when the number of antennas appears to 

be infinite, obtains (12)  

  𝐹𝐵 = √𝐹𝑅
𝐻𝐹𝑅𝑆𝑣𝑒𝑐𝐹𝑑𝑖𝑎𝑔 ≈ 𝑆𝑣𝑒𝑐𝐹𝑑𝑖𝑎𝑔                           (12)    

                             

 𝑆𝑣𝑒𝑐 is also a unit matrix if  𝐿𝑡 = 𝐿𝑟 = 𝑁𝑠,  𝐹𝑑𝑖𝑎𝑔 ≈ 𝛾 Ι  where 𝛾 is factor of normalization , assume 

that all 𝑁𝑠 have equal power allocation, obtains  𝐹𝐵𝐹𝐵
𝐻 = 𝛾2 Ι.  Rewriting the problem of optimization 

in (8), obtains (13)  
 

𝑎𝑟𝑔 max 𝑙𝑜𝑔2 det (Ι +
𝜌𝛾2

𝑁𝑠𝜎𝑤𝑛
2 𝐻𝐹𝑅𝐹𝑅

𝐻𝐻𝐻)

𝐹𝑅                                                                    
         (13) 

      𝑠. 𝑡.     |𝐹𝑅(𝑎, 𝑏)| = 1, ∀ 𝑎, 𝑏              
 

Since the 𝐹𝑅  column permutation does not change the result of  𝐹𝑅𝐹𝑅
𝐻, it is possible to rewrite 𝐹𝑅𝐹𝑅

𝐻 as 

in (14) 

 

   𝐹𝑅𝐹𝑅
𝐻 = [(𝐹𝑅)−𝑏𝑓𝑏][(𝐹𝑅)−𝑏𝑓𝑏]𝐻                       (14)

     

Where (𝐹𝑅)−𝑏 is a sub matrix of 𝐹𝑅 excluding the b-th column 𝑓𝑏. The auxiliary matrix  𝐴𝑈𝑏 in (15) 
 

 𝐴𝑈𝑏 = Ι +
𝜌𝛾2

𝑁𝑠𝜎𝑤𝑛
2 𝐻(𝐹𝑅)−𝑏(𝐹𝑅)−𝑏

𝐻𝐻𝐻                                             (15)      

      

In (13), the AP problem of optimization can be decimated in to a chain of sub-problems by selecting the 

correct initial matrix 𝐹𝑅  and assuming that (𝐹𝑅)−𝑏 is fixed. The sub-problem of b-th optimization can 

be written as in (16) 
 

𝑎𝑟𝑔 max 𝑙𝑜𝑔2 det (Ι +
𝜌𝛾2

𝑁𝑠𝜎𝑤𝑛
2 𝑓𝑏

𝐻𝐻𝐻𝐴𝑈𝑏
−1𝐻𝑓𝑏)

𝑓𝑏                                                                    
                     (16) 

       𝑠. 𝑡.   |𝑓𝑏| = 1,   ∀𝑏      

                  

Note that maximizing problem (16) over 𝑓𝑏 is equivalent to (17) 

 

arg 𝑚𝑎𝑥|𝑓𝑏
𝐻𝐻𝐻𝐴𝑈𝑏

−1𝐻𝑓𝑏|

𝑓𝑏

          

 𝑠. 𝑡.     |𝑓𝑏| = 1,      ∀𝑏            (17) 

                        

By defining an intermediate matrix 𝐼𝑀𝑏 = 𝐻𝐻𝐴𝑈𝑏
−1𝐻 helps to solve this problem easily. 𝑓𝑏(𝑎) 

represent’s the a-th element of  𝑓𝑏. Therefore, the following Proposition 1, the proof of it is in Appendix 

[22], will iteratively obtain every element of 𝑓𝑏. 
 

Proposition 1: Given the elements of AP { 𝑓𝑏(1), 𝑓𝑏(2), … , 𝑓𝑏(𝑖), … , 𝑓𝑏(𝑁𝑇𝑋
)},  𝑖 ≠ 𝑎, 

The optimal solution is 𝑓𝑏(𝑎) given in (18) 
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𝑓𝑏
𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑎) = 𝜑 {∑ 𝐼𝑀𝑏

𝐻(𝑖, 𝑎)𝑓𝑏(𝑖)
𝑁𝑇𝑋
𝑖=1
𝑖≠𝑎

}                        (18)

       

Where the complex parameter is given in (19) 

 

      𝜑(𝑐) = {
1,             𝑐 = 0
𝑐

|𝑐|
,              𝑐 ≠ 0                          (19)

    

  By Proposition1 one can obtain the optimal solution 𝑓𝑏
𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑎). Computing and 

calculating  𝐴𝑈𝑏  and 𝐼𝑀𝑏 = 𝐻𝐻𝐴𝑈𝑏
−1

𝐻 matrices, results in high computational complexity. 

Specifically, the calculation of 𝐼𝑀𝑏  can be simplified by certain standard mathematical operations  
shown in Proposition 2, given by solution(20),  its proof is given in Appendix of [22]. 

 

Proposition 2: It is possible to simplify the matrix  𝐼𝑀𝑏 = 𝐻𝐻𝐴𝑈𝑏
−1

𝐻, where  𝐴𝑈𝑏 = Ι +
𝜌𝛾2

𝑁𝑠𝜎𝑤𝑛
2 𝐻(𝐹𝑅)−𝑏(𝐹𝑅)−𝑏

𝐻 𝐻𝐻  

 

  𝐼𝑀𝑏 = 𝐾 +

𝜌𝛾2

𝑁𝑠𝜎𝑤𝑛
2 𝐾𝑓𝑏𝑓𝑏

𝐻𝐾

1−
𝜌𝛾2

𝑁𝑠𝜎𝑤𝑛
2 𝑓𝑏

𝐻𝐾𝑓𝑏

                              (20)

      

Where K=𝐻𝐻𝑄−1𝐻 and Q= Ι +
𝜌𝛾2

𝑁𝑠𝜎𝑤𝑛
2 𝐻𝐹𝑅

𝐻𝐹𝑅𝐻𝐻. 

Due to the computation difficulties of conventional approaches in mm-Wave, the research direction has 

been motivated towards application of intelligence training methods. Many stochastic algorithms are 

available in literature that can be implemented. PSO is metaheuristic algorithm, robust against local 
minima’s, makes it appealing for real time applications. PSO has been chosen due to ease of 

implementation and converges in few computations [24]. It has only two parameters i.e velocity and 

position. To implement HPSO algorithm one need to have proper mapping of precoding parameters to 
PSO. The HPSO in Algorithm1 performs the search through swarm of particles and updates in each 

iteration.  

Each bird in the swarm is the particle that carries nonzero element of the precoding matrix i.e 

ith particle holds all precoding coefficients (𝐹𝑩, 𝐹𝑅) and portraying these while initialization is only to 
convey how HP is mapped to particle. 

The significant elements of the precoding matrix 𝐹𝑅, which are not zero are mapped to a particle, 

therefore the particle that has the best value is to be computed for a given objective function. The 
objective function provides fitness value for every particle. The Particles in the given search space 

update their velocity and the position using (21), where 𝑤𝑤𝑒𝑖 is inertia weight, 𝐾𝑗  is the personal/local 

best, 𝐾𝑡  is the global best search.  
 

𝑣𝑒𝑙𝑗,𝑑 (𝑡 + 1) = 𝑤𝑤𝑒𝑖𝑣𝑒𝑙𝑗,𝑑 (𝑡) + 𝑏1𝑛1 (𝐾𝑗 − 𝐹𝑅𝑗,𝑑(𝑡)) + 𝑏2𝑛2 (𝐾𝑡 − 𝐹𝑅𝑗,𝑑(𝑡)) 

𝐹𝑅𝑗,𝑑 (𝑡 + 1) = 𝐹𝑅𝑗,𝑑
(𝑡) + 𝑣𝑒𝑙𝑗,𝑑 (𝑡 + 1)                          (21) 

 

The inertia weight 𝑤𝑤𝑒𝑖  maintains current direction and controls the impact between the 
previous and current velocities. The terms b1 and b2 are referred to as the acceleration coefficients 

(cognitive and social components) which determines the inclination of search. The variables 𝑛1 and 𝑛2 

are random numbers which are distributed in the interval [0, 1] uniformly.  The b1 component portrays 
how much a given particle should rely on itself / believe in its earlier memory, whereas the b2 component 

conveys how much a given particle should rely on its neighbours [24].  When the inertia weight is 
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initially being greater than 1 the particles are biased to explore the search space and if the inertia weight 

decays to a value less than 1, the acceleration components are given more attention.  

 The proposed HPSO algorithm in Algorithm 1 presents the strategy in a better manner. Initially 
the analog precoder/combiner matrices are computed using array response vectors (7). HPSO will 

iteratively choose the best pair of analog precoding and combining (𝐹𝑹, 𝑊𝑅), that maximizes achievable 

rate and in turn maximizes the SE of the system. The components of the AP are modelled until 
convergence, to achieve the global optimal value. At each iteration, the velocity of agent is adjusted 

towards the best location and the best agent. In the simulation, each element  𝑓𝑏(𝑎) requires only a few 

cycles to achieve convergence. Then the DP 𝐹𝐵 is computed based on the optimal AP 𝐹𝑅 , which 

improves the system SE. The HPSO implementation is shown in Figure 2. 
 

 

 
Figure 2: Hierarchical PSO implementation flow chart 

 

1. The individual particle vary their position at each time-step. 
2. Algorithm incorporates both local search and global search process for optimization. 

3. Each iteration provides a local and a global best position for each particle. 

4. As the position of the particle changes, the Velocity of the particle also varies. 
5. The particle that has the best solution is tracked and the fitness value is stored in (pbest) 

best position. 

6. The best value tracked by the optimizer by its particle neighbours, is the local best 

position 𝐾𝑗 . 

7. The best value when a particle considers all population as neighbours is the gbest, 

𝐾𝑡  Global best position. 
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Algorithm1: Hierarchical Particle Swarm Optimization (HPSO) for hybrid precoding 
 

Step1: Initialize the parameters H, K, 𝑁𝑇𝑋
, 𝑁𝑠,i, 𝜌 

Set 𝐹𝑅 random manner 

For t=1: 𝑁𝑇𝑋
 

For j=1: size of (K) 

If ( 𝐹𝑅𝑗,𝑑(𝑡)) <  𝐾𝑗(𝑡) 𝑡ℎ𝑒𝑛 𝐾𝑗(𝑡) = 𝐹𝑅𝑗,𝑑(𝑡) 

𝐾𝑗(𝑡) = min (𝐾𝑡(𝑡)) 

End if 
For d=1: dimension 

𝑣𝑒𝑙𝑗,𝑑  (𝑡 + 1) = 𝑤𝑤𝑒𝑖𝑣𝑒𝑙𝑗,𝑑 (𝑡) + 𝑏1𝑛1 (𝐾𝑗 − 𝐹𝑅𝑗,𝑑(𝑡)) + 𝑏2𝑛2 (𝐾𝑡 − 𝐹𝑅𝑗,𝑑(𝑡)) 

      𝐹𝑅𝑗,𝑑 (𝑡 + 1) = 𝐹𝑅𝑗,𝑑
(𝑡) + 𝑣𝑒𝑙𝑗,𝑑 (𝑡 + 1) 

 

If 𝑣𝑒𝑙𝑗,𝑑(𝑡 + 1) >  𝑣𝑒𝑙𝑚𝑎𝑥  𝑡ℎ𝑒𝑛 𝑣𝑒𝑙𝑗,𝑑(𝑡 + 1) = 𝑣𝑒𝑙𝑚𝑎𝑥 

Else if 𝑣𝑒𝑙𝑗,𝑑(𝑡 + 1) <  𝑣𝑒𝑙𝑚𝑖𝑛 𝑡ℎ𝑒𝑛 𝑣𝑒𝑙𝑗,𝑑(𝑡 + 1) = 𝑣𝑒𝑙𝑚𝑖𝑛 

End if 

If 𝐹𝑅𝑗,𝑑
(𝑡 + 1) > 𝐹𝑅𝑚𝑎𝑥  𝑡ℎ𝑒𝑛  𝐹𝑅𝑗,𝑑

(𝑡 + 1) = 𝐹𝑅𝑚𝑎𝑥 

Else if     𝐹𝑅𝑗,𝑑
(𝑡 + 1) < 𝐹𝑅𝑚𝑖𝑛 𝑡ℎ𝑒𝑛 𝐹𝑅𝑗,𝑑

(𝑡 + 1) = 𝐹𝑅𝑚𝑖𝑛 

End if 

End for 

End for 
End for 

Step2: l=0; 

Step3: repeat 

Step4: for b=1 to  𝑁𝑠 

Calculate fitness function 𝑓𝑏 from  𝐹𝑅
𝑙
 

Update  𝐼𝑀𝑏 = 𝐾 +

𝜌𝛾2

𝑁𝑠𝜎𝑤𝑛
2 𝐾𝑓𝑏𝑓𝑏

𝐻𝐾

1−
𝜌𝛾2

𝑁𝑠𝜎𝑤𝑛
2 𝑓𝑏

𝐻𝐾𝑓𝑏

 

 

While no convergence of 𝑓𝑏(𝑎) do 

For a=1 to 𝑁𝑇𝑋
 

𝑓𝑏(𝑎) =  𝜑 {∑ 𝐼𝑀𝑏
𝐻(𝑖, 𝑎)𝑓𝑏(𝑖)

𝑁𝑇𝑋

𝑖=1
𝑖≠𝑎

} 

End for 
End while 

Compute 𝑓𝑏
𝑙+1 𝑏𝑦 𝑢𝑠𝑖𝑛𝑔 {𝑓𝑏(𝑎)} 𝑎=1

𝑁𝑇𝑋  

End for 

Compute  𝐹𝑅
𝑙+1 𝑏𝑦 𝑢𝑠𝑖𝑛𝑔 {𝐹𝑅(𝑎)} 𝑎=1

𝑁𝑠  

l=l+1; 
 Until a stop criterion is activated 

 Step 5: compute 𝐹𝐵 

 

Where 𝑤𝑤𝑒𝑖 = 0.5 +
[0 𝑜𝑟 1]

2
  is the inertia factor, 𝑏1 & 𝑏2  are constant values and 𝑛1,  𝑛2 unifor 

mly distributed random value. 
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Even though PSO is simple to implement, it is not that easy to obtain optimality conditions for 

very large datasets. Hence, the variations of the PSO algorithm or incorporation of deep learning is 

needed in future to work with the real time datasets. 
 

3.4. Hybrid Combiner Design 

 The design of hybrid combiner follows same as HP to optimize the overall SE in (5). The 
appropriate formulation of the problem is given in (22) 

 

𝑎𝑟𝑔 𝑚𝑎𝑥 log2 det (Ι +
𝜌

𝑁𝑠
𝑅𝑛

−1𝑊𝐵
𝐻𝑊𝑅

𝐻𝐻1𝐻1
𝐻  𝑋 𝑊𝑅𝑊𝐵)

𝑊𝐵, 𝑊𝑅                                                                                            
           (22) 

s.t  |𝑊𝑅(𝑎, 𝑏)| = 1    ∀𝑎, 𝑏                                                     

 

Where 𝐻1 = 𝐻 𝐹𝑅  𝐹𝐵 . The analog combiner also satisfies 𝑊𝑅
𝐻𝑊𝑅  ∝ Ι  for the antenna-arrays in large-

scale [22], close to the AP. Therefore, assuming  𝑊𝐵𝑊𝐵
𝐻 ≈ 𝛿2Ι, where 𝛿2 factor of normalization, 

obtains the value  𝑊𝐵
𝐻𝑊𝑅

𝐻𝑊𝑅𝑊𝐵 ≈ Ι . The objective function in (22) can be approximated as given in 
equation (23) 

 

=  log2 det (Ι +
𝜌

𝑁𝑠
𝑅𝑛

−1𝑊𝐵
𝐻𝑊𝑅

𝐻𝐻1𝐻1
𝐻𝑊𝑅𝑊𝐵) ≈   log2 det (Ι +

𝜌

𝑁𝑠𝜎𝑤𝑛
2 𝑊𝐵

𝐻𝑊𝑅
𝐻𝐻1𝐻1

𝐻𝑊𝑅𝑊𝐵) (23)              

      
The digital combiner is modelled for a fixed analog combiner according to the proposed hierarchical 

strategy. It is possible to write the virtual combiner design problem given in (24) as 

 

𝑎𝑟𝑔 𝑚𝑎𝑥 log2 det (Ι +
𝜌

𝑁𝑠𝜎𝑤𝑛
2 𝑊𝐵

𝐻𝑊𝑅
𝐻𝐻1𝐻1

𝐻  𝑋 𝑊𝑅𝑊𝐵)

𝑊𝐵                                                                                           
               (24)

      

By applying the singular value decomposition (SVD) of 𝐻1
𝐻𝑊𝑅 i.e 𝐻1

𝐻𝑊𝑅 = 𝑈1Λ1𝑉1
𝐻  , the solution of  

𝑊𝐵 design is given in (25)  

                                 𝑊𝐵 = 𝑉1                                (25)                              

Since 𝑊𝐵 is an unitary matrix, the previous assumption of  𝑊𝐵
𝐻  is valid. Appropriately the analog 

combiner 𝑊𝑅  design problem in (23) can further given as (26) 

 

𝑎𝑟𝑔 𝑚𝑎𝑥 log2 det (Ι +
𝜌𝛿2

𝑁𝑠𝜎𝑤𝑛
2 𝐻1

𝐻   𝑊𝑅𝑊𝑅
𝐻𝐻1)

𝑊𝐵                                                             
         (26) 

 𝑠. 𝑡  |𝑊𝑅(𝑎, 𝑏)| = 1            ∀𝑎, 𝑏    

                  
This analog combiner 𝑊𝑅 is similar to AP problem in (12). To achieve the ideal  𝑊𝑅  , the symbols 

𝐹𝑅  and H are replaced by 𝑊𝑅  and  𝐻1 in Algorithm1. 

4.  Simulation Outcomes 

The HPSO performance with the existing algorithms are illustrated for 𝑁𝑇𝑋
= 144, 𝑁𝑅𝑋

= 36  in mm-

WmM. The UPA is particularly suitable for mm-Wave MIMO systems due to its favourable propagation 

performance and compact physical size. The propagation channel environment is modelled with 𝑆𝑐𝑙𝑢 =
5 clusters with 𝑃𝑝𝑎𝑡ℎ = 10 rays per cluster, according to [19]. AODs and AOAs observe the Laplacian 

distribution of azimuth and elevation angles over [0 , 2𝜋) with uniformly distributed mean angle and a 

spread of 10 degrees. The SNR = 
𝜌

𝜎𝑤𝑛
2 , enforcing identical total power constraint for uniformity on all 

precoding algorithms. The results are illustrated for 1000 random channel realizations on an average. 

The parameters for HPSO Algorithm are in Table 1. 
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Table 1. HPSO Algorithm parameters 
 

PSO Parameters Values 

Swarm Size (Population size) 50 

Inertia Weight w 1 

Wdamp  0.99 

Acceleration coefficient-Personal  b1 1.5 

Acceleration coefficient-Global     b2 1.5 

Maximum number of Iterations 1000 

 

A. Evaluation of Spectral efficiency(SE) 

 Consider the perfect CSI, the SE with different algorithms is investigated. To reduce the 

energy cost of the mm-WmM , assume NRF is equal to the Ns. As illustrated in Figure.3, the SE of the 
Optimal, Proposed, RF-Iterative algorithm [13], PE-AltMin algorithm [19], OMP [14], Analog 

beamforming [10] are plotted and compared. With regard to SE, in the case of fully connected HPC 

structure shown in Figure.1, provides more freedom in the RF domain and the proposed HPSO algorithm 
is capable of achieving near-optimal digital precoding/combining performance. The SE increases as 

SNR varies from -30dB to 5dB, indicates that mm-WmM can overcome channel impairments and noise.  

   

 
Figure 3: SE vs SNR for different algorithms for 𝑁𝑇𝑋

= 144, 𝑁𝑅𝑋
= 36   

 

This means that the proposed algorithm is preferable compared to other algorithms, even though the 

𝑁𝑅𝐹   are limited. The HPSO algorithm outperforms the existing ones which makes it suitable for 

implementation in a practical mm-Wave MIMO system. The OMP algorithm is sensitive to the choice 

of dictionary matrix and its dependence on sparsity knowledge leads to its poor performance. 

 For investigating the convergence of the HPSO, the SE versus no. of iterations is plotted in 
Figure.4. The main short coming of the OMP is that small modification of stopping criterion or any 

violation in constraints of dictionary matrix leads to its convergence errors i.e it’s performance is not 

robust. It is observed that the convergence of the HPSO algorithm is faster than the existing algorithms 
and has a major implementation benefit for the realistic scenarios.  
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 In the practical mm-WmM, it is very tough to obtain perfect CSI due to the high dimension of 

the channel matrix. Hence, it is important to evaluate the performance of the proposed HPSO algorithm 

under the imperfect CSI as shown in Figure.5. 
 

 
 Figure 4: SE vs no. of iteration by different algorithms (Lt=Lr=NRF=Ns=4) and SNR=0dB 
 

The estimated approximate channel matrix for imperfect CSI is then referred to as �̂�, which can be 

expressed as (27) 

 �̂� = 𝐻𝜏 + √1 − 𝜏2Ε𝑀                                            (27) 
 

                 Where EM is the error matrix which is i.i.d with (0,1) mean=0, variance=1 , 𝜏 𝜖 [0,1] represent 

the channel estimation accuracy. In Figure.5, consider the imperfect CSI scenario with various 𝜏 values, 

evidently the HPSO algorithm performance increases when 𝜏 grows larger. It is observed that the 
proposed HPSO algorithm is robust i.e it is insensitive to the varying accuracy of CSI, which is an added 

advantage. It is also observed that when 𝜏 = 0.9 the HPSO instantly gets closer to the perfect CSI case. 

For 𝜏 = 0.5 also it achieves an acceptable performance. 
 

 
Figure 5: Impact of imperfect CSI on HPSO algorithm (NRF=Ns=4) 
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In Figure.6 and Figure.7, the 𝑁𝑇𝑋
and 𝑁𝑅𝑋 are varied and the SE is plotted at SNR = -20dB. It shows the 

performance enhancement by the HPSO algorithm over the existent ones and approaches the optimal 

performance. HPSO has a SE almost 40 bps/Hz more than the Analog beamforming with 𝑁𝑇𝑋
= 144,

𝑁𝑅𝑋
= 36. One of the reasons for the improved performance is that it is possible to form narrower beams 

by RF antenna arrays with larger number of antennas at the Tx and Rx. It significantly contribute towards 

improving the total achievable SE, which is especially appealing for mm-Wave massive MIMO systems. 
 

 

  
       

 Figure 6: SE vs Transmitting antennas  

 

 
    Figure 7: SE vs Receiving antennas  

 
 



ICCIEA 2020
Journal of Physics: Conference Series 1817 (2021) 012013

IOP Publishing
doi:10.1088/1742-6596/1817/1/012013

14

 
 

 

 
 

 

5.  Conclusion 

The HPC in mm-Wave MIMO systems are examined in this paper by incorporating AI based 

algorithm. To optimize the AP, the HPSO algorithm is proposed and based on optimized AP the optimal 
DP is calculated. The hybrid combiner is designed using similar hierarchical strategy as hybrid precoder. 

The simulation and the low computation analysis shows that the algorithm proposed could achieve 

almost optimal performance. The design of hybrid precoder along with sparse channel estimation in mm-

WmM can be improved by incorporating Deep learning intelligence algorithms for real time datasets in 

future. 
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